cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257791 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = 2^(n+1)*(2*k - 1), n,k >= 1.

Original entry on oeis.org

4, 8, 12, 16, 24, 20, 32, 48, 40, 28, 64, 96, 80, 56, 36, 128, 192, 160, 112, 72, 44, 256, 384, 320, 224, 144, 88, 52, 512, 768, 640, 448, 288, 176, 104, 60, 1024, 1536, 1280, 896, 576, 352, 208, 120, 68, 2048, 3072, 2560, 1792, 1152, 704, 416, 240, 136, 76
Offset: 1

Views

Author

L. Edson Jeffery, May 08 2015

Keywords

Comments

Lemma: The sequence is a permutation of A008586\{0} = {4*m : m = 1,2,...}.
Proof: Write A(n,k)/4 = A054582(n-1,k-1). The sequence A054582 is known to be a permutation of the natural numbers, and the result follows. QED

Examples

			Array A begins:
.       4    12     20     28     36     44     52     60     68     76
.       8    24     40     56     72     88    104    120    136    152
.      16    48     80    112    144    176    208    240    272    304
.      32    96    160    224    288    352    416    480    544    608
.      64   192    320    448    576    704    832    960   1088   1216
.     128   384    640    896   1152   1408   1664   1920   2176   2432
.     256   768   1280   1792   2304   2816   3328   3840   4352   4864
.     512  1536   2560   3584   4608   5632   6656   7680   8704   9728
.    1024  3072   5120   7168   9216  11264  13312  15360  17408  19456
.    2048  6144  10240  14336  18432  22528  26624  30720  34816  38912
		

Crossrefs

Cf. A000079 (powers of 2), A005408 (odd numbers), A008586 (multiples of 4), A014480, A054582.
Cf. A257499.

Programs

  • Mathematica
    (* Array: *)
    A257791[n_, k_] := 2^(n + 1)*(2*k - 1); Grid[Table[A257791[n, k], {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[2^(n - k + 2)*(2*k - 1), {n, 10}, {k, n}]]

Formula

A(n,n) = 4*A014480(n-1).