A257837 Decimal expansion of Sum_{n>=2} (-1)^n/log(2*n-1).
5, 6, 3, 9, 9, 1, 4, 3, 9, 8, 2, 4, 2, 3, 5, 9, 1, 0, 8, 5, 8, 4, 2, 5, 4, 6, 3, 5, 8, 3, 0, 5, 1, 2, 7, 3, 6, 9, 6, 8, 9, 9, 5, 5, 4, 5, 2, 6, 8, 5, 4, 8, 1, 8, 4, 2, 7, 5, 3, 0, 7, 5, 2, 5, 5, 3, 6, 9, 2, 7, 6, 0, 5, 0, 0, 8, 9, 4, 9, 9, 3, 4, 9, 0, 9, 6, 7, 1, 0, 1, 2, 6, 9, 9, 3, 8, 2, 9, 2, 1, 4, 2, 8, 7, 8, 3, 9, 6, 8
Offset: 0
Examples
0.5639914398242359108584254635830512736968995545268548...
Links
- Iaroslav V. Blagouchine, Table of n, a(n) for n = 0..1000
Programs
-
Maple
evalf(sum((-1)^n/log(2*n-1), n=2..infinity), 120); evalf(1/(2*log(3))+6*(Int(arctan(x)/((log(9+9*x^2)^2+4*arctan(x)^2)*sinh(3*Pi*x/2)), x=0..infinity)), 120);
-
Mathematica
NSum[(-1)^n/Log[2*n-1], {n, 2, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200, Method -> "AlternatingSigns"] 1/(2*Log[3])+6*NIntegrate[ArcTan[x]/((Log[9+9*x^2]^2+4*ArcTan[x]^2)*Sinh[3*Pi*x/2]), {x, 0,Infinity}, WorkingPrecision->120] (* Mathematica 5.1 evaluates correctly only first 17 digits. In later versions, all digits are correct. *)
-
PARI
default(realprecision,120); sumalt(n=2, (-1)^n/log(2*n-1))
-
PARI
allocatemem(50000000); default(realprecision,1200); 1/(2*log(3))+intnum(x=0,1000,6*atan(x)/((log(9+9*x^2)^2+4*atan(x)^2)*sinh(3*Pi*x/2)))
Formula
Equals 1/(2*log(3))+6*Integral_{x=0..infinity} arctan(x)/((log(9+9*x^2)^2+4*arctan(x)^2)*sinh(3*Pi*x/2)).
Comments