A257848 a(n) = floor(n/8) * (n mod 8).
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 2, 4, 6, 8, 10, 12, 14, 0, 3, 6, 9, 12, 15, 18, 21, 0, 4, 8, 12, 16, 20, 24, 28, 0, 5, 10, 15, 20, 25, 30, 35, 0, 6, 12, 18, 24, 30, 36, 42, 0, 7, 14, 21, 28, 35, 42, 49, 0, 8, 16, 24, 32, 40, 48, 56, 0, 9
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1).
Programs
-
Mathematica
Table[Floor[n/8]Mod[n,8],{n,0,90}] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7},90] (* Harvey P. Dale, Nov 05 2023 *)
-
PARI
a(n,b=8)=(n=divrem(n,b))[1]*n[2]
-
PARI
concat([0,0,0,0,0,0,0,0,0], Vec(x^9*(7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2*(x^4+1)^2) + O(x^100))) \\ Colin Barker, May 11 2015
-
Python
def A257848(n): return (n>>3)*(n&7) # Chai Wah Wu, Jan 19 2023
Formula
a(n) = 2*a(n-8)-a(n-16). - Colin Barker, May 11 2015
G.f.: x^9*(7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2*(x^4+1)^2). - Colin Barker, May 11 2015
Comments