A257850 a(n) = floor(n/10) * (n mod 10).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,-1).
Crossrefs
Programs
-
Magma
[Floor(n/10)*(n mod 10): n in [0..100]]; // Vincenzo Librandi, May 11 2015
-
Mathematica
Table[Floor[n/10] Mod[n, 10], {n, 100}] (* Vincenzo Librandi, May 11 2015 *)
-
PARI
a(n,b=10)=(n=divrem(n,b))[1]*n[2]
-
Python
def A257850(n): return n//10*(n%10) # M. F. Hasler, Sep 01 2021
Formula
a(n) = 2*a(n-10)-a(n-20). - Colin Barker, May 11 2015
G.f.: x^11*(9*x^8+8*x^7+7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^4-x^3+x^2-x+1)^2*(x^4+x^3+x^2+x+1)^2). - Colin Barker, May 11 2015
Comments