A257867 Nonnegative integers n such that in balanced ternary representation the number of occurrences of each trit doubles when n is squared.
314, 942, 2824, 2826, 2854, 3074, 3130, 3212, 8066, 8090, 8096, 8170, 8224, 8324, 8426, 8450, 8472, 8478, 8480, 8512, 8534, 8562, 8578, 8588, 8656, 9222, 9224, 9390, 9404, 9636, 9638, 24198, 24206, 24270, 24288, 24510, 24670, 24672, 24674, 24676, 24802, 24972
Offset: 1
Examples
942 is in the sequence because 942 = 110L0L0_bal3 and 942^2 = 887364 = 1LL0001L1L0100_bal3, where L represents (-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Wikipedia, Balanced ternary
Crossrefs
Programs
-
Maple
p:= proc(n) local d, m, r; m:=n; r:=0; while m>0 do d:= irem(m,3,'m'); if d=2 then m:=m+1 fi; r:=r+x^d od; r end: a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) while p(k)*2<>p(k^2) do od; k end: seq(a(n), n=1..50);
-
Python
def a(n): s=[] x=0 while n>0: x=n%3 n//=3 if x==2: x=-1 n+=1 s.append(x) return s print([n for n in range(1, 25001) if a(n**2).count(-1)==2*a(n).count(-1) and a(n**2).count(1)==2*a(n).count(1) and a(n**2).count(0)==2*a(n).count(0)]) # Indranil Ghosh, Jun 07 2017