cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257893 Pandigital numbers reordered so that the numbers A050278(n)/2^k, where 2^k||A050278(n), appear in nondecreasing order.

Original entry on oeis.org

3076521984, 3718250496, 6398410752, 1384906752, 2769813504, 2845310976, 1578369024, 1074659328, 4761059328, 9805234176, 2507931648, 1294073856, 5619843072, 6591873024, 9073852416, 9574023168, 1208549376, 1249837056, 6103498752, 1542389760, 1683947520
Offset: 1

Views

Author

Keywords

Comments

If two such numbers A050278(n_1)/2^k_1 and A050278(n_2)/2^k_2 are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(4)/2^18=a(5)/2^19=5283.
There are 184423 such pairs.

Crossrefs

Cf. A050278.

Programs

  • Python
    from itertools import permutations
    l = []
    for d in permutations('0123456789', 10):
        if d[0] != '0':
            d2 = int(''.join(d))
            d = d2
            r = d2 % 2
            while not r:
                d2, r = divmod(d2, 2)
            l.append((d2,d))
    l.sort()
    A257893_list = [b for a,b in l] # Chai Wah Wu, May 24 2015

Formula

min(A050278(n)/2^k) = 3076521984/2^21 = 1467.