A257893 Pandigital numbers reordered so that the numbers A050278(n)/2^k, where 2^k||A050278(n), appear in nondecreasing order.
3076521984, 3718250496, 6398410752, 1384906752, 2769813504, 2845310976, 1578369024, 1074659328, 4761059328, 9805234176, 2507931648, 1294073856, 5619843072, 6591873024, 9073852416, 9574023168, 1208549376, 1249837056, 6103498752, 1542389760, 1683947520
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A050278.
Programs
-
Python
from itertools import permutations l = [] for d in permutations('0123456789', 10): if d[0] != '0': d2 = int(''.join(d)) d = d2 r = d2 % 2 while not r: d2, r = divmod(d2, 2) l.append((d2,d)) l.sort() A257893_list = [b for a,b in l] # Chai Wah Wu, May 24 2015
Formula
min(A050278(n)/2^k) = 3076521984/2^21 = 1467.
Comments