cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257895 Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 12, 36, 8, 1, 1, 60, 144, 216, 16, 1, 1, 20, 3600, 1728, 1296, 32, 1, 1, 140, 3600, 216000, 20736, 7776, 64, 1, 1, 280, 176400, 72000, 12960000, 248832, 46656, 128, 1, 1, 2520, 705600, 24696000, 12960000, 777600000
Offset: 1

Views

Author

Jean-François Alcover, May 12 2015

Keywords

Examples

			Array of fractions begins:
1,      1,          1,             1,                 1,                    1, ...
1,    3/2,        7/4,          15/8,             31/16,                63/32, ...
1,   11/6,      85/36,       575/216,         3661/1296,           22631/7776, ...
1,  25/12,    415/144,     5845/1728,       76111/20736,        952525/248832, ...
1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
1,  49/20, 13489/3600,  336581/72000, 68165041/12960000,   483900263/86400000, ...
...
Row 2 (denominators) is A000079 (powers of 2),
Row 3 is A000400 (powers of 6),
Row 4 is A001021 (powers of 12),
Row 5 is A159991,
Row 6 is not in the OEIS.
Column 2 (denominators) is A002805 (denominators of harmonic numbers),
Column 3 is A051418 (lcm(1..n)^2),
Column 4 is not in the OEIS.
		

Crossrefs

Cf. A257894 (numerators).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Denominator, {n, 1, 12}, {k, 1, n}] // Flatten

Formula

T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*binomial(n,j).