cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257928 Least prime p such that pi(p*n) = pi(q*n)*pi(r*n) for some primes q and r with p > q > r, where pi(x) denotes the number of primes not exceeding x.

Original entry on oeis.org

13, 7, 13, 67, 19, 79, 47, 193, 107, 41, 229, 179, 383, 281, 173, 1327, 193, 701, 1429, 211, 113, 73, 1093, 83, 1447, 659, 197, 719, 331, 761, 1171, 2269, 467, 509, 863, 113, 643, 577, 563, 379, 607, 1291, 283, 3593, 2549, 881, 1523, 4663, 2657, 3583, 8807, 683, 2251, 863, 8929, 163, 6737, 2459, 4919, 6553
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 13 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. Also, for each positive integer n there are distinct primes p, q and r such that pi(p*n) = pi(q*n) + pi(r*n).

Examples

			a(1) = 13 since 3, 5 and 13 are distinct primes with pi(13*1) = 6 = 2*3 = pi(3*1)*pi(5*1).
a(200) = 105227 since 19, 113 and 105227 are distinct primes with pi(105227*200) = 1332672 = 528*2524 = pi(19*200)*pi(113*200).
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n]
    Do[k=0;Label[bb];k=k+1;Do[Do[If[f[Prime[k]*n]==f[Prime[i]*n]*f[Prime[j]*n],Goto[aa]];If[f[Prime[k]*n]
    				
  • PARI
    a(n)={my(i,j,k=3);while(1,for(j=2,k-1,for(i=1,j-1,if(primepi(prime(k)*n) == primepi(prime(i)*n)*primepi(prime(j)*n),break(3));));k++);return(prime(k));} main(size)={return(vector(size,n,a(n)));} /* Anders Hellström, Jul 13 2015 */