cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257938 Least positive integer k such that prime(k*n) - 1 = (prime(i*n)-1)*(prime(j*n)-1) for some integers 0 < i < j < k.

Original entry on oeis.org

6, 3, 8, 71, 12, 14, 105, 221, 24, 499, 261, 612, 1341, 175, 917, 549, 1351, 2303, 2273, 4767, 364, 1395, 1390, 1431, 6481, 2479, 918, 2412, 17783, 3178, 2994, 7538, 3409, 1361, 9645, 3454, 9197, 7074, 10418, 6059, 36235, 182, 1910, 4648, 1130, 695, 3973, 10839, 8647, 7942
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 13 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, for any nonzero integer m and positive integer n, the set {prime(k*n)+m: k = 1,2,3,...} always contains three distinct elements x, y and z with x*y = z.

Examples

			a(1) = 6 since prime(6*1)-1 = 12 = 2*6 = (prime (2*1)-1)*(prime(4*1)-1).
a(4) = 71 since prime(71*4)-1 = 1860 = 6*310 = (prime(1*4)-1)*(prime(16*4)-1).
a(41) = 36235 since prime(36235*41)-1 = 23634312 = 676*34962 = (prime(3*41)-1)*(prime(91*41)-1).
a(69) = 64999 since prime(64999*69)-1 = 76643820 = 4590*16698 = (prime(9*69)-1)*(prime(28*69)-1).
a(77) = 137789 since prime(137789*77)-1 = 191037600 = 2028*94200 = (prime(4*77)-1)*(prime(118*77)-1).
a(99) = 167708 since prime(167708*99)-1 = 306849088 = 10528*29146 = (prime(13*99)-1)*(prime(32*99)-1).
a(189) = 951492 since prime(951492*189)-1 = 3776304996 = 4126*915246 = (prime(3*189)-1)*(prime(383*189)-1).
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    Dv[n_]:=Divisors[Prime[n]-1]
    L[n_]:=Length[Dv[n]]
    P[k_,n_,i_]:=PrimeQ[Part[Dv[k*n],i]+1]&&Mod[PrimePi[Part[Dv[k*n],i]+1],n]==0
    Do[k=0;Label[bb];k=k+1; Do[If[P[k,n,i]&&P[k,n,L[k*n]-i+1],Goto[aa]],{i,2,L[k*n]/2}];Goto[bb];Label[aa];Print[n, " ", k];Continue,{n,1,50}]
  • PARI
    a(n)={my(i,j,k=3);while(1,for(j=2,k-1,for(i=1,j-1,if(prime(k*n) - 1 == (prime(i*n)-1)*(prime(j*n)-1),break(3));));k++);return(k);}
    main(size)={return(vector(size,n,a(n)));} /* Anders Hellström, Jul 13 2015 */