A257943 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 3^(n-1)*(2*k - 1))/2, n,k >= 1.
1, 2, 2, 5, 5, 3, 14, 14, 8, 4, 41, 41, 23, 11, 5, 122, 122, 68, 32, 14, 6, 365, 365, 203, 95, 41, 17, 7, 1094, 1094, 608, 284, 122, 50, 20, 8, 3281, 3281, 1823, 851, 365, 149, 59, 23, 9, 9842, 9842, 5468, 2552, 1094, 446, 176, 68, 26, 10
Offset: 1
Examples
Array A begins: . 1 2 3 4 5 6 7 8 9 10 . 2 5 8 11 14 17 20 23 26 29 . 5 14 23 32 41 50 59 68 77 86 . 14 41 68 95 122 149 176 203 230 257 . 41 122 203 284 365 446 527 608 689 770 . 122 365 608 851 1094 1337 1580 1823 2066 2309 . 365 1094 1823 2552 3281 4010 4739 5468 6197 6926 . 1094 3281 5468 7655 9842 12029 14216 16403 18590 20777 . 3281 9842 16403 22964 29525 36086 42647 49208 55769 62330 . 9842 29525 49208 68891 88574 108257 127940 147623 167306 186989
Programs
-
Mathematica
(* Array: *) Grid[Table[(1 + 3^(n - 1)*(2*k - 1))/2, {n, 10}, {k, 10}]] (* Array antidiagonals flattened: *) Flatten[Table[(1 + 3^(n - k)*(2*k - 1))/2, {n, 10}, {k, n}]]