cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257943 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (1 + 3^(n-1)*(2*k - 1))/2, n,k >= 1.

Original entry on oeis.org

1, 2, 2, 5, 5, 3, 14, 14, 8, 4, 41, 41, 23, 11, 5, 122, 122, 68, 32, 14, 6, 365, 365, 203, 95, 41, 17, 7, 1094, 1094, 608, 284, 122, 50, 20, 8, 3281, 3281, 1823, 851, 365, 149, 59, 23, 9, 9842, 9842, 5468, 2552, 1094, 446, 176, 68, 26, 10
Offset: 1

Views

Author

L. Edson Jeffery, May 13 2015

Keywords

Examples

			Array A begins:
.     1      2      3      4      5       6       7       8       9      10
.     2      5      8     11     14      17      20      23      26      29
.     5     14     23     32     41      50      59      68      77      86
.    14     41     68     95    122     149     176     203     230     257
.    41    122    203    284    365     446     527     608     689     770
.   122    365    608    851   1094    1337    1580    1823    2066    2309
.   365   1094   1823   2552   3281    4010    4739    5468    6197    6926
.  1094   3281   5468   7655   9842   12029   14216   16403   18590   20777
.  3281   9842  16403  22964  29525   36086   42647   49208   55769   62330
.  9842  29525  49208  68891  88574  108257  127940  147623  167306  186989
		

Crossrefs

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(1 + 3^(n - 1)*(2*k - 1))/2, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[(1 + 3^(n - k)*(2*k - 1))/2, {n, 10}, {k, n}]]