A257952 Number of ways to quarter a 2n X 2n chessboard.
1, 1, 5, 37, 766, 43318, 7695805, 4015896016, 6371333036059, 30153126159555641, 431453249608567040694, 18558756256964594960321428, 2411839397220672351872242339314, 945878376319424018440202856702995909, 1121914029089423867715407724741780046405923
Offset: 0
Keywords
References
- M. Gardner, The Unexpected Hanging and Other Mathematical Diversions. Simon and Schuster, NY, 1969, p. 189.
- Popular Computing (Calabasas, CA), Vol. 1 (No. 7, 1973), Problem 15, front cover and page 2.
Links
- T. R. Parkin, Letter to N. J. A. Sloane, Feb 01, 1974. This letter contained as an attachment the following 11-page letter to Fred Gruenberger.
- T. R. Parkin, Letter to Fred Gruenberger, Jan 29, 1974
- T. R. Parkin, Discussion of Problem 15, Popular Computing (Calabasas, CA), Vol. 2, Number 15 (June 1974), pages PC15-4 to PC15-8.
- Popular Computing (Calabasas, CA), Illustration showing that a(3) = 37, Vol. 1 (No. 7, 1973), front cover. (One of the 37 is simply the square divided into four quadrants.)
- Giovanni Resta, Illustration of a(4) = 766.
Crossrefs
Programs
-
Mathematica
A006067 = Import["https://oeis.org/A006067/b006067.txt", "Table"][[All, 2]]; a[n_] := If[n == 0, 1, A006067[[2n]]]; a /@ Range[0, 14] (* Jean-François Alcover, Sep 14 2019 *)
Formula
Extensions
a(9)-a(14) from Andrew Howroyd, Apr 18 2016
Comments