cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A257955 Decimal expansion of Gamma(1/Pi).

Original entry on oeis.org

2, 8, 1, 1, 2, 9, 7, 5, 1, 4, 6, 7, 0, 8, 6, 1, 6, 4, 2, 1, 2, 2, 7, 9, 0, 8, 0, 3, 7, 1, 0, 4, 8, 1, 6, 9, 3, 5, 2, 8, 1, 6, 5, 5, 2, 2, 3, 2, 9, 1, 7, 6, 5, 6, 8, 2, 2, 8, 9, 6, 5, 9, 0, 5, 3, 9, 3, 8, 6, 1, 5, 4, 8, 8, 7, 0, 1, 9, 2, 0, 5, 6, 8, 5, 1, 8, 8, 4, 8, 7, 4, 2, 3, 1, 8, 9, 0, 9, 3, 6, 4, 2, 4
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).

Examples

			2.8112975146708616421227908037104816935281655223291765...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/Pi), 117);
  • Mathematica
    RealDigits[Gamma[1/Pi], 10, 117][[1]]
  • PARI
    default(realprecision, 117); gamma(1/Pi)

A257958 Decimal expansion of the Digamma function at 1/Pi, negated.

Original entry on oeis.org

3, 2, 9, 0, 2, 1, 3, 9, 6, 0, 1, 7, 3, 2, 2, 4, 0, 9, 0, 8, 4, 3, 0, 9, 0, 8, 4, 5, 5, 4, 0, 0, 1, 9, 0, 3, 7, 4, 0, 2, 1, 9, 3, 2, 8, 2, 0, 0, 7, 0, 1, 6, 1, 2, 9, 3, 8, 8, 9, 5, 3, 1, 8, 3, 7, 5, 5, 3, 7, 5, 6, 6, 5, 3, 3, 7, 1, 7, 9, 1, 2, 9, 1, 5, 3, 2, 8, 7, 7, 1, 1, 1, 6, 9, 3, 5, 6, 7, 3, 1, 6, 6, 9
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for Psi(1/Pi) = -log(Pi) - Pi/2 - 1/2 - 1/8 - 1/72 + 1/64 +7/400 + 7/576 + 643/94080 + 103/30720 + ...

Examples

			-3.2902139601732240908430908455400190374021932820070161...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(1/Pi), 120);
  • Mathematica
    RealDigits[PolyGamma[1/Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(1/Pi)

Formula

Int_0^infinity x*dx/[(x^2+1)(exp(2x)-1)] = -Pi/2-Psi(1/Pi) = -1.5707...+ 3.2902.. = 1.71941... - R. J. Mathar, Aug 14 2023

A257959 Decimal expansion of the Digamma function at 1/2 + 1/Pi, negated.

Original entry on oeis.org

9, 2, 3, 6, 3, 2, 6, 7, 5, 9, 6, 1, 3, 3, 7, 7, 3, 4, 6, 0, 0, 0, 2, 6, 3, 3, 4, 7, 4, 8, 6, 7, 4, 7, 1, 3, 9, 8, 9, 4, 8, 9, 3, 2, 1, 5, 2, 6, 1, 0, 2, 7, 5, 3, 8, 5, 3, 5, 3, 9, 9, 3, 1, 5, 7, 2, 2, 0, 1, 3, 8, 9, 5, 4, 1, 0, 3, 9, 8, 8, 6, 7, 3, 3, 8, 7, 7, 1, 3, 7, 8, 2, 8, 0, 9, 1, 7, 3, 1, 0, 8, 9, 4
Offset: 0

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for Psi(1/2 + 1/Pi) = -log(Pi) + 1/4 + 1/16 - 5/576 - 13/512 - 569/25600 -539/36864 - 98671/12042240 - 16231/3932160 - ...

Examples

			-0.9236326759613377346000263347486747139894893215261027...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(1/2+1/Pi), 120);
  • Mathematica
    RealDigits[PolyGamma[1/2+1/Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(1/2+1/Pi)

A269545 Decimal expansion of Gamma(Pi).

Original entry on oeis.org

2, 2, 8, 8, 0, 3, 7, 7, 9, 5, 3, 4, 0, 0, 3, 2, 4, 1, 7, 9, 5, 9, 5, 8, 8, 9, 0, 9, 0, 6, 0, 2, 3, 3, 9, 2, 2, 8, 8, 9, 6, 8, 8, 1, 5, 3, 3, 5, 6, 2, 2, 2, 4, 4, 1, 1, 9, 9, 3, 8, 0, 7, 4, 5, 4, 7, 0, 4, 7, 1, 0, 0, 6, 6, 0, 8, 5, 0, 4, 2, 8, 2, 5, 0, 0, 7, 2, 5, 3, 0, 4, 4, 6, 7, 9, 2, 8, 4, 7, 4, 7, 9, 6
Offset: 1

Views

Author

Keywords

Examples

			2.2880377953400324179595889090602339228896881533562224...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(pi)
  • Maple
    evalf(GAMMA(Pi), 120);
  • Mathematica
    RealDigits[Gamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(Pi)
    

Formula

Equals Integral_{x >= 0} x^(Pi-1)/e^x dx (Euler integral of the second kind).

A269546 Decimal expansion of log(Gamma(Pi)).

Original entry on oeis.org

8, 2, 7, 6, 9, 4, 5, 9, 2, 3, 2, 3, 4, 3, 7, 1, 0, 1, 5, 2, 9, 5, 7, 8, 5, 5, 8, 4, 5, 2, 3, 5, 9, 9, 5, 1, 1, 5, 3, 5, 0, 1, 7, 3, 4, 1, 2, 0, 7, 3, 7, 3, 1, 6, 7, 9, 1, 3, 1, 9, 2, 2, 5, 8, 1, 7, 1, 9, 3, 5, 7, 7, 1, 9, 7, 6, 9, 1, 7, 1, 4, 1, 8, 3, 1, 5, 7, 5, 1, 6, 1, 8, 0, 5, 5, 1, 8, 7, 5, 3, 6, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.8276945923234371015295785584523599511535017341207373...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(pi))
  • Maple
    evalf(lnGAMMA(Pi), 120);
  • Mathematica
    RealDigits[LogGamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(Pi)
    

A269547 Decimal expansion of Psi(Pi).

Original entry on oeis.org

9, 7, 7, 2, 1, 3, 3, 0, 7, 9, 4, 2, 0, 0, 6, 7, 3, 3, 2, 9, 2, 0, 6, 9, 4, 8, 6, 4, 0, 6, 1, 8, 2, 3, 4, 3, 6, 4, 0, 8, 3, 4, 6, 0, 9, 9, 9, 4, 3, 2, 5, 6, 3, 8, 0, 0, 9, 5, 2, 3, 2, 8, 6, 5, 3, 1, 8, 1, 0, 5, 9, 2, 4, 7, 7, 7, 1, 4, 1, 3, 1, 7, 3, 0, 2, 0, 7, 5, 6, 5, 4, 3, 6, 2, 9, 2, 8, 7, 3, 4, 3, 5, 5
Offset: 0

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			0.9772133079420067332920694864061823436408346099943256...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(pi)
  • Maple
    evalf(Psi(Pi), 120)
  • Mathematica
    RealDigits[PolyGamma[Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(Pi)
    

A269557 Decimal expansion of Gamma(log(2)).

Original entry on oeis.org

1, 3, 0, 9, 0, 4, 0, 9, 1, 1, 2, 8, 1, 4, 8, 1, 2, 6, 9, 8, 2, 4, 5, 3, 2, 5, 2, 1, 3, 9, 5, 9, 2, 9, 5, 7, 5, 6, 1, 2, 5, 8, 9, 0, 3, 1, 9, 1, 8, 1, 8, 9, 0, 0, 1, 0, 3, 8, 9, 8, 0, 0, 0, 7, 9, 0, 9, 0, 9, 3, 9, 7, 6, 3, 4, 5, 6, 3, 2, 7, 4, 7, 1, 6, 0, 9, 7, 4, 1, 2, 5, 0, 3, 0, 1, 0, 0, 4, 3, 5, 1, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			1.3090409112814812698245325213959295756125890319181890...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(log(2))
  • Maple
    evalf(GAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[Gamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(log(2))
    

A269558 Decimal expansion of log(Gamma(log(2))).

Original entry on oeis.org

2, 6, 9, 2, 9, 4, 7, 4, 0, 2, 8, 3, 1, 3, 1, 2, 4, 2, 9, 4, 9, 9, 1, 6, 5, 8, 3, 2, 1, 1, 7, 1, 2, 8, 2, 4, 8, 8, 8, 9, 0, 3, 5, 1, 0, 2, 1, 1, 1, 6, 6, 1, 1, 7, 2, 8, 7, 0, 6, 1, 3, 1, 8, 9, 6, 9, 4, 8, 4, 9, 8, 7, 1, 3, 5, 9, 1, 1, 6, 0, 3, 2, 8, 0, 6, 2, 1, 6, 1, 5, 3, 6, 0, 2, 4, 6, 3, 8, 0, 9, 3, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.2692947402831312429499165832117128248889035102111661...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(log(2)))
  • Maple
    evalf(lnGAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[LogGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(log(2))
    

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A257963 Decimal expansion of the Integral_{x=0..1} arctan(arctanh(x))/x.

Original entry on oeis.org

1, 0, 2, 5, 7, 6, 0, 5, 1, 0, 9, 3, 1, 3, 3, 0, 4, 5, 0, 3, 9, 8, 5, 4, 8, 6, 6, 0, 9, 6, 9, 5, 5, 2, 7, 9, 5, 3, 3, 4, 8, 7, 1, 8, 5, 6, 2, 1, 5, 0, 6, 9, 3, 9, 4, 2, 2, 3, 3, 8, 6, 8, 4, 4, 0, 1, 5, 8, 5, 1, 9, 2, 0, 8, 9, 9, 0, 7, 0, 9, 4, 2, 2, 2, 6, 7, 8, 7, 8, 7, 9, 1, 9, 7, 7, 9, 5, 3, 0, 7, 1, 3, 2, 9, 6
Offset: 1

Views

Author

Robert G. Wilson v, May 14 2015

Keywords

Comments

"The arctangent of the hyperbolic arctangent is analytic in the whole disk |x| < 1, and therefore, can be expanded into the MacLaurin series", see the first reference.

Examples

			= 1.02576051093133045039854866096955279533487185621506939422338684401585192089...
		

Crossrefs

Programs

  • Maple
    evalf(Pi*(log(GAMMA(1/Pi)) - log(GAMMA(1/2 + 1/Pi)) - log(Pi)/2),120); # Vaclav Kotesovec, May 17 2015
  • Mathematica
    nn = 111; RealDigits[ NIntegrate[ ArcTan[ ArcTanh[ x]]/x, {x, 0, 1}, AccuracyGoal -> nn, WorkingPrecision -> nn], 10, nn][[1]] (* or *)
    RealDigits[Pi (Log[Gamma[1/Pi]] - Log[Gamma[1/2 + 1/Pi]] - Log[Pi]/2), 10, 111][[1]] (* Robert G. Wilson v, May 14 2015 *)

Formula

The integral is equivalent to Pi*(log(Gamma(1/Pi)) - log(Gamma(1/2 + 1/Pi)) - log(Pi)/2), see page 82 of the second reference.
Showing 1-10 of 10 results.