A257958 Decimal expansion of the Digamma function at 1/Pi, negated.
3, 2, 9, 0, 2, 1, 3, 9, 6, 0, 1, 7, 3, 2, 2, 4, 0, 9, 0, 8, 4, 3, 0, 9, 0, 8, 4, 5, 5, 4, 0, 0, 1, 9, 0, 3, 7, 4, 0, 2, 1, 9, 3, 2, 8, 2, 0, 0, 7, 0, 1, 6, 1, 2, 9, 3, 8, 8, 9, 5, 3, 1, 8, 3, 7, 5, 5, 3, 7, 5, 6, 6, 5, 3, 3, 7, 1, 7, 9, 1, 2, 9, 1, 5, 3, 2, 8, 7, 7, 1, 1, 1, 6, 9, 3, 5, 6, 7, 3, 1, 6, 6, 9
Offset: 1
Examples
-3.2902139601732240908430908455400190374021932820070161...
Links
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/Pi, Mathematics of Computation (AMS), 2015.
Crossrefs
Programs
-
Maple
evalf(Psi(1/Pi), 120);
-
Mathematica
RealDigits[PolyGamma[1/Pi], 10, 120][[1]]
-
PARI
default(realprecision, 120); psi(1/Pi)
Formula
Int_0^infinity x*dx/[(x^2+1)(exp(2x)-1)] = -Pi/2-Psi(1/Pi) = -1.5707...+ 3.2902.. = 1.71941... - R. J. Mathar, Aug 14 2023
Comments