A257959 Decimal expansion of the Digamma function at 1/2 + 1/Pi, negated.
9, 2, 3, 6, 3, 2, 6, 7, 5, 9, 6, 1, 3, 3, 7, 7, 3, 4, 6, 0, 0, 0, 2, 6, 3, 3, 4, 7, 4, 8, 6, 7, 4, 7, 1, 3, 9, 8, 9, 4, 8, 9, 3, 2, 1, 5, 2, 6, 1, 0, 2, 7, 5, 3, 8, 5, 3, 5, 3, 9, 9, 3, 1, 5, 7, 2, 2, 0, 1, 3, 8, 9, 5, 4, 1, 0, 3, 9, 8, 8, 6, 7, 3, 3, 8, 7, 7, 1, 3, 7, 8, 2, 8, 0, 9, 1, 7, 3, 1, 0, 8, 9, 4
Offset: 0
Examples
-0.9236326759613377346000263347486747139894893215261027...
Links
- Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/Pi, Mathematics of Computation (AMS), 2015.
Crossrefs
Programs
-
Maple
evalf(Psi(1/2+1/Pi), 120);
-
Mathematica
RealDigits[PolyGamma[1/2+1/Pi], 10, 120][[1]]
-
PARI
default(realprecision, 120); psi(1/2+1/Pi)
Comments