A257999 Numbers of the form, 2^i*3^j, i+j odd.
2, 3, 8, 12, 18, 27, 32, 48, 72, 108, 128, 162, 192, 243, 288, 432, 512, 648, 768, 972, 1152, 1458, 1728, 2048, 2187, 2592, 3072, 3888, 4608, 5832, 6912, 8192, 8748, 10368, 12288, 13122, 15552, 18432, 19683, 23328, 27648, 32768, 34992, 41472, 49152, 52488
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a257999 n = a257999_list !! (n-1) a257999_list = filter (odd . flip mod 2 . a001222) a003586_list
-
Mathematica
max = 53000; Reap[Do[k = 2^i*3^j; If[k <= max && OddQ[i + j], Sow[k]], {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}]][[2, 1]] // Union (* Amiram Eldar, Feb 18 2021 after Jean-François Alcover at A036667 *)
-
Python
from sympy import integer_log def A257999(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length()+(i&1)>>1 for i in range(integer_log(x, 3)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025
Formula
A069352(a(n)) mod 2 = 1.
Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Feb 18 2021