A258000 Expansion of 1/(1-x-x^2-x^3-x^4+x^5+x^6+x^7-x^9).
1, 1, 2, 4, 8, 14, 26, 48, 89, 164, 302, 557, 1028, 1896, 3496, 6448, 11893, 21935, 40455, 74613, 137613, 253807, 468108, 863354, 1592327, 2936808, 5416499, 9989915, 18424893, 33981939, 62674564, 115593785, 213195313, 393206621, 725210344, 1337541166
Offset: 0
Examples
a(6)=26; these are (42,24=one),(411),(141),(114),(33),(321,231=one),(123,132=one),(312),(213),(3111=four),(222),(2211),(1122),(2112),(1221),(1212),(2121),(21111=five),(111111).
Links
- Index entries for partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,-1,-1,-1,0,1)
Programs
-
Magma
I:=[1,1,2,4,8,14,26,48,89]; [n le 9 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4)-Self(n-5)-Self(n-6)-Self(n-7)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, May 19 2015
-
Mathematica
LinearRecurrence[{1, 1, 1, 1, -1, -1, -1, 0, 1}, {1, 1, 2, 4, 8, 14, 26, 48, 89}, 50] (* Vincenzo Librandi, May 19 2015 *)
-
PARI
Vec(1/(-x^9+x^7+x^6+x^5-x^4-x^3-x^2-x+1) + O(x^100)) \\ Colin Barker, May 17 2015
Formula
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9)
G.f.: 1/(1-x-x^2-x^3-x^4+x^5+x^6+x^7-x^9).
Extensions
More terms from Vincenzo Librandi, May 19 2015
Comments