cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258023 Numbers of form (2^i)*(3^j) or (3^i)*(5^j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 16, 18, 24, 25, 27, 32, 36, 45, 48, 54, 64, 72, 75, 81, 96, 108, 125, 128, 135, 144, 162, 192, 216, 225, 243, 256, 288, 324, 375, 384, 405, 432, 486, 512, 576, 625, 648, 675, 729, 768, 864, 972, 1024, 1125, 1152, 1215, 1296
Offset: 1

Views

Author

Reinhard Zumkeller, May 16 2015

Keywords

Comments

Union of A003586 and A003593;
A006530(a(n)) <= 5; A001221(a(n)) <= 2; a(n) mod 10 != 0.

Examples

			.   n |  a(n) |                 n |  a(n) |
. ----+-------+----------     ----+-------+------------
.   1 |    1  |  1             16 |   32  |  2^5
.   2 |    2  |  2             17 |   36  |  2^2 * 3^2
.   3 |    3  |  3             18 |   45  |  3^2 * 5
.   4 |    4  |  2^2           19 |   48  |  2^4 * 3
.   5 |    5  |  5             20 |   54  |  2 * 3^3
.   6 |    6  |  2 * 3         21 |   64  |  2^6
.   7 |    8  |  2^3           22 |   72  |  2^3 * 3^2
.   8 |    9  |  3^2           23 |   75  |  3 * 5^2
.   9 |   12  |  2^2 * 3       24 |   81  |  3^4
.  10 |   15  |  3 * 5         25 |   96  |  2^5 * 3
.  11 |   16  |  2^4           26 |  108  |  2^2 * 3^3
.  12 |   18  |  2 * 3^2       27 |  125  |  5^3
.  13 |   24  |  2^3 * 3       28 |  128  |  2^7
.  14 |   25  |  5^2           29 |  135  |  3^3 * 5
.  15 |   27  |  3^3           30 |  144  |  2^4 * 3^2
		

Crossrefs

Programs

  • Haskell
    import Data.List.Ordered (union)
    a258023 n = a258023_list !! (n-1)
    a258023_list = union a003586_list a003593_list
  • Mathematica
    n = 10^4; Join[Table[2^i*3^j, {i, 0, Log[2, n]}, {j, 0, Log[3, n/2^i]}], Table[3^i*5^j, {i, 0, Log[3, n]}, {j, 0, Log[5, n/3^i]}]] // Flatten // Union (* Amiram Eldar, Sep 23 2020 *)

Formula

a(n) ~ exp(sqrt(2*log(2)*log(3)*log(5)*n / log(10))) / sqrt(3). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 27/8. - Amiram Eldar, Sep 23 2020