cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258034 Expansion of phi(q) * phi(q^9) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 4, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 8, 0
Offset: 0

Views

Author

Michael Somos, Jun 03 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 4*q^9 + 4*q^10 + 4*q^13 + 2*q^16 + 4*q^18 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(36), 1), 87); A[1] + 2*A[2] + 2*A[5] + 4*A[10] + 4*A[11] + 4*A[14] + 2*A[17] + 4*A[19];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^9], {q, 0, n}];
    a[ n_] := Which[ n < 1, Boole[n == 0], Mod[n, 3] == 2, 0, True, 2 DivisorSum[ n, If[ Mod[n/#, 9] > 0, 1, 2] KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jul 04 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, (n+1)%3 * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^18 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^9 + A) * eta(x^36 + A))^2, n))};
    
  • PARI
    {a(n) = if( n<1, n==0, n%3==2, 0, 2 * sumdiv(n, d, if(n\d%9, 1, 2) * kronecker( -4, d)))}; /* Michael Somos, Jul 04 2015 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); (n%3 < 2) * 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 1 + (-1)^e, p%12>6, (1 + (-1)^e) / 2, e+1)))}; /* Michael Somos, Jul 04 2015 */
    

Formula

Expansion of eta(q^2)^5 * eta(q^18)^5 / (eta(q) * eta(q^4) * eta(q^9) * eta(q^36))^2 in powers of q.
Euler transform of period 36 sequence [2, -3, 2, -1, 2, -3, 2, -1, 4, -3, 2, -1, 2, -3, 2, -1, 2, -6, 2, -1, 2, -3, 2, -1, 2, -3, 4, -1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A258322(n). a(4*n) = a(n).
a(3*n + 2) = a(4*n + 3) = a(8*n + 6) = a(9*n + 3) = a(9*n + 6) = 0.
a(3*n + 1) = 2 * A122865(n). a(6*n + 4) = 2 * A122856(n). a(9*n) = A004018(n). a(12*n + 1) = 2 * A002175(n).
a(2*n) = A028601(n). - Michael Somos, Jul 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 (A019670). - Amiram Eldar, Jan 29 2024