cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258045 Table T(b, m) of largest exponents k such that for p = prime(m) and base b > 1 the congruence b^(p-1) == 1 (mod p^k) is satisfied, or 0 if no such k exists, read by antidiagonals (downwards).

Original entry on oeis.org

0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Felix Fröhlich, May 26 2015

Keywords

Comments

a(n) > 1 if b appears in row k, column n of the table in A257833 for k > 1 and n > 1.

Examples

			T(3, 5) = 2, because the largest Wieferich exponent of prime(5) = 11 in base 3 is 2.
Table starts
b=2:  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=3:  1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=4:  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=5:  2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=6:  0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=7:  1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=8:  0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=9:  3, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=10: 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=11: 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=12: 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=13: 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=14: 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1 ...
b=15: 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=16: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
b=17: 4, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 ...
b=18: 0, 0, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1 ...
b=19: 1, 2, 1, 3, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2 ...
b=20: 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ...
....
The triangle a(n ,m) begins:
  m 1 2 3 4 5 6 7 8 9 10 11 ...
n
2   0
3   1 1
4   1 0 0
5   1 1 1 2
6   1 1 1 1 0
7   1 2 1 0 0 1
8   1 1 1 1 1 1 0
9   1 1 1 1 1 2 2 3
10  1 1 1 1 1 0 1 0 0
11  1 1 1 1 1 1 1 1 2  1
12  1 1 1 1 1 1 1 1 0  1  0
...
		

Crossrefs

Programs

  • PARI
    for(b=2, 20, forprime(p=1, 70, k=0; while(Mod(b, p^k)^(p-1)==1, k++); if(k > 0, k--); print1(k, ", ")); print(""))

Formula

a(n, m) = T(m+1, n-m), n >=2, m = 1, 2, ..., n-1. - Wolfdieter Lang, Jun 29 2015

Extensions

Edited by Wolfdieter Lang, Jun 29 2015