A258084 Numbers n such that n concatenated with its reversal n' yields a prime when the rightmost digit of n and leftmost digit of n' are coalesced.
2, 3, 5, 7, 10, 13, 15, 18, 19, 31, 35, 37, 38, 72, 75, 78, 79, 91, 92, 100, 103, 105, 106, 113, 114, 124, 127, 128, 133, 138, 139, 143, 147, 154, 155, 163, 165, 166, 174, 179, 181, 184, 193, 198, 199, 301, 302, 304, 307, 308, 315, 323, 324, 335, 345, 348, 351
Offset: 1
Examples
a(6) = 13: Reversal of its digits gives 31. Concatenating 13 with 31, blending together 3's, results in 131, which is prime. a(26) = 124: Reversal of its digits gives 421. Concatenating 124 with 421, blending together 4's, results in 12421, which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..5493
Programs
-
Mathematica
Select[Range[1, 1200], PrimeQ[FromDigits[Join[IntegerDigits [FromDigits [Join[Most [IntegerDigits[#]]]]], IntegerDigits[FromDigits [Reverse[IntegerDigits[#]]]]]] ] &]
-
PARI
for(n=1,200,d=digits(n);m=(10^#d)*floor(n/10);s=sum(i=1,#d,d[i]*10^(i-1));if(isprime(m+s),print1(n,", "))) \\ Derek Orr, Jun 22 2015
Comments