A258085 Strictly increasing list of F and F - 1, where F = A000045, the Fibonacci numbers.
0, 1, 2, 3, 4, 5, 7, 8, 12, 13, 20, 21, 33, 34, 54, 55, 88, 89, 143, 144, 232, 233, 376, 377, 609, 610, 986, 987, 1596, 1597, 2583, 2584, 4180, 4181, 6764, 6765, 10945, 10946, 17710, 17711, 28656, 28657, 46367, 46368, 75024, 75025, 121392, 121393, 196417
Offset: 1
Examples
F = (1,1,2,3,5,8,13,...); F-1 = (0,0,1,2,4,7,12,...), so that the ordered list of F and F-1 is (0,1,2,3,4,5,7,8,...). Regarding the fractional parts in Comment, for r = golden ratio and m = 7, the fractional parts are ordered as follows: -8+r, -3+2r, -11+7r, -6+4 r,-1+r, -9+6r, -4+3r. The set of differences is {5-3r, -8+5r}, so that 7 is a term in A258085.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,0,0,-1).
Programs
-
Magma
[0,1] cat &cat[[Fibonacci(n)-1, Fibonacci(n)]: n in [4..40]]; // Vincenzo Librandi, Jun 28 2015
-
Maple
map((t->(t-1,t)) @ combinat:-fibonacci,[1,$4..100]); # Robert Israel, Jun 29 2015
-
Mathematica
f = Fibonacci[Range[60]]; u = Union[f, f - 1]
-
PARI
a(n)=if(n<6,n-1,fibonacci((n+5)\2)-n%2) \\ Charles R Greathouse IV, Jun 28 2015
-
PARI
concat(0, Vec(-x^2*(x^6+x^5+x^4-x^2-2*x-1)/((x-1)*(x+1)*(x^4+x^2-1)) + O(x^100))) \\ Colin Barker, Feb 16 2017
Formula
From Colin Barker, Jun 28 2015: (Start)
a(n) = 2*a(n-2) - a(n-6) for n>8.
G.f.: -x^2*(x^6+x^5+x^4-x^2-2*x-1) / ((x-1)*(x+1)*(x^4+x^2-1)).
(End)
Comments