cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258096 Expansion of psi(x^4) * phi(-x^4)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 8, 7, 10, 12, 8, 18, 18, 16, 24, 21, 20, 28, 32, 20, 32, 36, 24, 42, 42, 28, 48, 57, 36, 52, 40, 36, 58, 60, 56, 48, 66, 48, 72, 74, 42, 80, 80, 61, 82, 72, 56, 90, 96, 64, 72, 98, 70, 100, 104, 64, 106, 108, 72, 114, 96, 84, 144, 111, 84, 104, 128
Offset: 0

Views

Author

Michael Somos, May 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 7*x^4 + 10*x^5 + 12*x^6 + 8*x^7 + ...
G.f. = q + 2*q^3 + 4*q^5 + 8*q^7 + 7*q^9 + 10*q^11 + 12*q^13 + 8*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4]^7 / (QPochhammer[ x]^2 QPochhammer[ x^8]^2), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2] EllipticTheta[ 4, 0, x^4]^4 / (EllipticTheta[ 4, 0, x] 2 x^(1/2)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^7 / (eta(x + A)^2 * eta(x^8 + A)^2), n))};

Formula

Expansion of q^(-1/2) * eta(q^2) * eta(q^4)^7 / (eta(q)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, -6, 2, 1, 2, -4, ...].
a(n) = (-1)^n * A209940(n) = (-1)^floor(n/2) * A113419(n) = (-1)^(n + floor(n/2)) * A113417(n).