cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258100 Expansion of c(q) * c(q^3) / c(q^2)^2 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 0, -1, -2, 0, 4, 5, 0, -10, -12, 0, 20, 26, 0, -39, -50, 0, 76, 92, 0, -140, -168, 0, 244, 295, 0, -415, -496, 0, 696, 818, 0, -1140, -1332, 0, 1820, 2126, 0, -2861, -3324, 0, 4448, 5126, 0, -6816, -7824, 0, 10292, 11793, 0, -15372, -17548, 0, 22756
Offset: 0

Views

Author

Michael Somos, May 20 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + q - q^3 - 2*q^4 + 4*q^6 + 5*q^7 - 10*q^9 - 12*q^10 + 20*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^9]^3 EllipticTheta[ 2, 0, q^(1/2)] QPochhammer[ q^3]^2 / (2 q^(1/8) QPochhammer[ q^6]^6), {q, 0, n}];
    a[ n_] := SeriesCoefficient[ 4 q QPochhammer[ q^9]^3 EllipticTheta[ 2, 0, q^(1/2)] / (QPochhammer[ q^3] EllipticTheta[ 2, 0, q^(3/2)]^3), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^9 + A)^3 / (eta(x + A) * eta(x^6 + A)^6), n))};

Formula

Expansion of (psi(q) * f(-q^9)^3) / (chi(-q^3)^2 * psi(q^3)^4) in powers of q where psi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^2 * eta(q^3)^2 * eta(q^9)^3 / (eta(q) * eta(q^6)^6) in powers of q.
Euler transform of period 18 sequence [ 1, -1, -1, -1, 1, 3, 1, -1, -4, -1, 1, 3, 1, -1, -1, -1, 1, 0, ...].
a(n) = (-1)^n * A164616(n). a(3*n) = A128641(n). a(3*n + 1) = A258099(n). a(3*n + 2) = 0.
Convolution invserse is A182034.

A261576 Expansion of 3 * b(q^2) * c(q^2) / c(q)^2 in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, -2, -3, 12, -10, -18, 60, -48, -75, 228, -172, -252, 732, -524, -744, 2088, -1450, -1998, 5460, -3704, -4986, 13344, -8872, -11736, 30876, -20206, -26322, 68268, -44080, -56682, 145224, -92672, -117867, 298800, -188756, -237744, 597108, -373852, -466836
Offset: 0

Views

Author

Michael Somos, Aug 25 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x - 3*x^2 + 12*x^3 - 10*x^4 - 18*x^5 + 60*x^6 - 48*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^6] / QPochhammer[ q^3]^3)^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A) * eta(x^6 + A) / eta(x^3 + A)^3)^2, n))};

Formula

Expansion of f(-q^2)^4 / (f(-q^3)^2 * f(q, q^2)^2) in powers of q where f(,) is Ramanujan's general theta function.
Expansion of (eta(q) * eta(q^2) * eta(q^6) / eta(q^3)^3)^2 in powers of q.
Euler transform of period 6 sequence [ -2, -4, 4, -4, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 9/4 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A258099.
a(n) = A261326(2*n). a(3*n + 2) = -3 * A233698(n).
Showing 1-2 of 2 results.