cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258101 Number x such that usigma(x) = (-1)sigma(x), where usigma(x) is the sum of unitary divisors of x (A034448) and (-1)sigma(x) is defined in A049060 .

Original entry on oeis.org

1, 4, 15867, 21357, 49887, 63468, 69875, 85428, 86387, 149875, 199548, 247475, 271607, 279500, 293944, 318681, 345548, 599500, 637659, 989900, 1086428, 1169091, 1274724, 1897875, 1913571, 2550636, 2665269, 2801880, 2855691
Offset: 1

Views

Author

Paolo P. Lava, May 20 2015

Keywords

Examples

			usigma(1) = (-1)sigma(1) = 1;
usigma(4) =  (-1)sigma(4) = 5;
usigma(15867) = (-1)sigma(15867) = 18480; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,d,k,n;
    a:=0; for n from 1 to q do a:=divisors(n); d:=0; for k from 1 to nops(a)
    do if gcd(a[k],n/a[k])=1 then d:=d+a[k]; fi; od; a:=ifactors(n)[2]; b:=1;
    for k from 1 to nops(a) do b:=b*(-1+sum(a[k][1]^j,j=1..a[k][2])); od;
    if b=d then print(n); fi; od; end: P(10^9);
  • Mathematica
    aQ[n_] := Module[{f = FactorInteger[n]}, p = f[[;;,1]]; e = f[[;;,2]]; Times@@(p^e+1) == Times@@((p^(e+1)-2*p+1)/(p-1))]; Join[{1}, Select[Range[2, 200000 ], aQ]] (* Amiram Eldar, Jun 23 2019 *)