A258118 Triangle T(n,k) in which the n-th row lists in increasing order the Heinz numbers of all complete partitions of n.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 30, 36, 40, 48, 64, 42, 54, 56, 60, 72, 80, 96, 128, 84, 90, 100, 108, 112, 120, 144, 160, 192, 256, 126, 132, 140, 150, 162, 168, 176, 180, 200, 216, 224, 240, 288, 320, 384, 512, 198, 210, 220, 252, 264, 270, 280, 300, 324, 336, 352, 360, 400, 432, 448, 480, 576, 640, 768, 1024
Offset: 0
Examples
54 = 2*3*3*3 is in the sequence because the partition [1,2,2,2] is complete. 28 = 2*2*7 is not in the sequence because the partition [1,1,4] is not complete. Triangle T(n,k) begins: 1; 2; 4; 6, 8; 12, 16; 18, 20, 24, 32; 30, 36, 40, 48, 64; 42, 54, 56, 60, 72, 80, 96, 128; 84, 90, 100, 108, 112, 120, 144, 160, 192, 256; ...
Links
- Alois P. Heinz, Rows n = 0..30, flattened
- SeungKyung Park, Complete Partitions, Fibonacci Quarterly, Vol. 36 (1998), pp. 354-360.
Programs
-
Maple
T:= proc(m) local b, ll, p; p:= proc(l) ll:=ll, (mul(ithprime(j), j=l)); 1 end: b:= proc(n, i, l) `if`(i<2, p([l[], 1$n]), `if`(n<2*i-1, b(n, iquo(n+1, 2), l), b(n, i-1, l)+b(n-i, i, [l[], i]))) end: ll:= NULL; b(m, iquo(m+1, 2), []): sort([ll])[] end: seq(T(n), n=0..12); # Alois P. Heinz, Jun 07 2015
-
Mathematica
T[m_] := Module[{b, ll, p}, p[l_List] := (ll = Append[ll, Product[Prime[j], {j, l}]]; 1); b[n_, i_, l_List] := If[i<2, p[Join[l, Array[1&, n]]], If[n < 2*i-1, b[n, Quotient[n+1, 2], l], b[n, i-1, l] + b[n-i, i, Append[l, i] ]]]; ll = {}; b[m, Quotient[m+1, 2], {}]; Sort[ll]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 28 2016, after Alois P. Heinz *)
Comments