cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258270 Consider the unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to the reverse of themselves.

Original entry on oeis.org

6, 75, 133, 1005, 1603, 4258, 5299, 84292, 89944, 170568, 192901, 303003, 695364, 1633303
Offset: 1

Views

Author

Paolo P. Lava, May 25 2015

Keywords

Examples

			Unitary aliquot parts of 6 are 1, 2, 3. We have: 1 + 2 + 3 = 6 that is equal to its reverse.
Unitary aliquot parts of 75 are 1, 3, 25. We have: 1 + 3 + 25 = 29; 3 + 25 + 29 = 57 that is the reverse of 75.
Unitary aliquot parts of 84292 are 1, 4, 13, 52, 1621, 6484, 21073. We have: 1 + 4 + 13 + 52 + 1621 + 6484 + 21073 = 29248 that is the reverse of 84292.
		

Crossrefs

Programs

  • Maple
    with(numtheory): R:=proc(w) local x, y; x:=w; y:=0;while x>0 do
    y:=10*y+(x mod 10); x:=trunc(x/10); od: y; end:
    P:=proc(q, h) local a,b,c,k,n,t,v; v:=array(1..h);
    for n from 1 to q do if not isprime(n) then a:=sort([op(divisors(n))]);
    b:=[]; c:=ilog10(n)+1; for k from 1 to nops(a)-1 do if gcd(a[k],n/a[k])=1
    then b:=[op(b),a[k]]; fi; od; if nops(b)>1 then
    for k from 1 to nops(b) do v[k]:=b[k]; od; t:=nops(b)+1; v[t]:=add(v[k],k=1..nops(b)); if R(v[t])=n then print(n); else
    while ilog10(v[t])+1<=c do t:=t+1; v[t]:=add(v[k], k=t-nops(b)..t-1);
    if R(v[t])=n then print(n); break; fi; od; fi; fi; fi; od;
    end: P(10^9,1000);

A263344 Consider the abundant aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to themselves.

Original entry on oeis.org

1700, 5950, 155574, 274550, 300894, 715275, 758625, 1365234, 1404172, 1542500, 1661750, 2095250, 2239750, 2673250, 2962250, 3106750, 3395750, 3829250, 4226625, 4262750, 4407250, 4700619, 5398750, 6371092, 8167635, 8560024, 12305620, 13725855, 15497625, 15586263
Offset: 1

Views

Author

Paolo P. Lava, Oct 15 2015

Keywords

Examples

			Aliquot parts of 1700 are 1, 2, 4, 5, 10, 17, 20, 25, 34, 50, 68, 85, 100, 170, 340, 425, 850. The abundant numbers are 20, 100, 340. Therefore:
20 + 100 + 340 = 460;
100 + 340 + 460 = 900;
340 + 460 + 900 = 1700.
		

Crossrefs

Cf. A005101 (abundant numbers), A027751 (aliquot parts), A246544, A247012, A258142, A258270.

Programs

Extensions

More terms from Amiram Eldar, Mar 20 2019

A307859 Consider the non-unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Original entry on oeis.org

24, 112, 189, 578, 1984, 2125, 3993, 5043, 9583, 19197, 32512, 126445, 149565, 175689, 225578, 236883, 1589949, 1862935, 1928125, 3171174, 5860526, 6149405, 11442047, 16731741, 60634549, 75062535, 134201344, 177816209, 1162143369, 4474779517, 10369035821
Offset: 1

Views

Author

Paolo P. Lava, May 02 2019

Keywords

Examples

			Divisors of 578 are 1, 2, 17, 34, 289, 578. Non-unitary aliquot parts are 17 and 34.
We have:
   17 +  34 =  51;
   34 +  51 =  85;
   51 +  85 = 136;
   85 + 136 = 221;
  136 + 221 = 357;
  221 + 357 = 578.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h);
    for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]);
    a:=[]; for k from 2 to nops(b)-1 do if gcd(b[k],n/b[k])>1 then
    a:=[op(a),b[k]]; fi; od; b:=nops(a); if b>1 then c:=0;
    for k from 1 to b do v[k]:=a[k]; c:=c+a[k]: od;
    t:=b+1; v[t]:=c; while v[t]
    				
  • Mathematica
    aQ[n_] := CompositeQ[n] && Module[{s = Select[Divisors[n], GCD[#, n/#] != 1 &]}, If[Length[s] < 2, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[10^4], aQ] (* Amiram Eldar, May 07 2019 *)

Extensions

a(20)-a(31) from Amiram Eldar, May 07 2019
Showing 1-3 of 3 results.