A258153 Numbers of the form p^2 + q with p, q and 2*p + 3 all prime.
6, 7, 9, 11, 15, 17, 21, 23, 27, 28, 30, 32, 33, 35, 36, 38, 41, 42, 44, 45, 47, 48, 51, 52, 54, 56, 57, 60, 62, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 84, 86, 87, 90, 92, 93, 96, 98, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 120, 122, 126, 128, 131, 132, 134, 135, 138, 141
Offset: 1
Keywords
Examples
a(1) = 6 since 6 = 2^2 + 2 with 2 and 2*2+3 = 7 both prime. a(2) = 7 since 7 = 2^2 + 3 with 2, 3, 2*2+3 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
n=0;Do[Do[If[PrimeQ[2Prime[k]+3]&&PrimeQ[m-Prime[k]^2],n=n+1;Print[n," ",m];Goto[aa]],{k,1,PrimePi[Sqrt[m]]}]; Label[aa];Continue,{m,1,141}] Module[{pp=40},Select[Union[#[[1]]^2+#[[2]]&/@Select[Tuples[ Prime[ Range[ pp]],2],PrimeQ[2#[[1]]+3]&]],#<=Prime[pp]-4&]] (* Harvey P. Dale, Jul 24 2021 *)
Comments