A258164 Decimal expansion of the log Gamma integral LG_5 = Integral_{0..1} log(Gamma(x))^5 dx.
1, 1, 8, 2, 9, 8, 7, 9, 3, 1, 8, 4, 5, 5, 1, 2, 5, 8, 7, 5, 4, 1, 6, 7, 2, 9, 0, 7, 2, 9, 2, 9, 6, 4, 4, 8, 4, 9, 0, 2, 9, 2, 8, 5, 2, 9, 0, 1, 0, 8, 2, 0, 6, 5, 7, 4, 7, 3, 4, 1, 1, 0, 4, 6, 0, 5, 3, 5, 5, 7, 2, 1, 9, 9, 6, 5, 6, 3, 2, 6, 3, 5, 3, 9, 0, 1, 6, 7, 9, 8, 8, 4, 3, 9, 3, 4, 7, 8, 8, 6, 4, 5, 5, 5, 3
Offset: 3
Examples
118.2987931845512587541672907292964484902928529010820657473411046...
Links
- David H. Bailey, David Borwein, and Jonathan M. Borwein, On Eulerian Log-Gamma Integrals and Tornheim-Witten Zeta Functions.
Programs
-
Maple
evalf(Int(log(GAMMA(x))^5,x=0..1),120); # Vaclav Kotesovec, May 22 2015
-
Mathematica
LG5 = NIntegrate[LogGamma[x]^5, {x, 0, 1}, WorkingPrecision -> 105]; RealDigits[LG5] // First