cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258175 Sum over all Dyck paths of semilength n of products over all peaks p of x_p+y_p, where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 2, 12, 114, 1448, 22770, 424164, 9095450, 220023184, 5914998594, 174682531260, 5614908340866, 194967208057272, 7267467723747218, 289270983756577620, 12239218862861690250, 548301077168477951520, 25918121712918957399426, 1288797080051656060595820
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x+y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x + y, 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)