A258177 Sum over all Dyck paths of semilength n of products over all peaks p of y_p^x_p, where x_p and y_p are the coordinates of peak p.
1, 1, 5, 112, 15312, 22928885, 475971133797, 164769697242392241, 1674694178196441599627207, 434453335415659344048321288040053, 2772047111897899211702422870954450438220795, 919691726760748842849028933552012720445531166591469510
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..35
- Wikipedia, Lattice path
Crossrefs
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^x, 1) + b(x-1, y+1, true) )) end: a:= n-> b(2*n, 0, false): seq(a(n), n=0..15);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, y^x, 1] + b[x - 1, y + 1, True]]]; a[n_] := b[2*n, 0, False]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
Comments