cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258332 Numbers n such that 4n + 1, 4n + 2 and 4n + 3 are not squarefree.

Original entry on oeis.org

211, 420, 722, 906, 2731, 3687, 3962, 4351, 4985, 5505, 5656, 5818, 6162, 6443, 7337, 7562, 7731, 8293, 9175, 9312, 9681, 9861, 10118, 11343, 11918, 11931, 11956, 12093, 12372, 13646, 13756, 13862, 14280, 14618, 14712, 14981, 15306, 15716, 15743, 15961, 16512, 17162, 17237
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 26 2015

Keywords

Examples

			211 is in this sequence because 4 * 211 + 1 = 845 = 5 * 13^2, 4 * 211 + 2 = 846 = 2 * 3^2 * 47 and 4 * 211 + 3 = 847 = 7 * 11^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000] | not IsSquarefree(4*n+1) and  not IsSquarefree(4*n+2) and not IsSquarefree(4*n+3)];
    
  • Maple
    remove(t->ormap(numtheory:-issqrfree,[4*t+1,4*t+2,4*t+3]), [$1..2*10^4]); # Robert Israel, Apr 03 2018
  • Mathematica
    Select[Range[1000], Union[{MoebiusMu[4# + 1], MoebiusMu[4# + 2], MoebiusMu[4# + 3]}] == {0} &] (* Alonso del Arte, May 26 2015 *)
  • PARI
    isok(n) = !issquarefree(4*n+1) && !issquarefree(4*n+2) && !issquarefree(4*n+3); \\ Michel Marcus, Apr 04 2018

A256013 Numbers n such that none of 9n + 1, 9n + 2, 9n + 3, 9n + 4, 9n + 5, 9n + 6, 9n + 7 and 9n + 8 are squarefree.

Original entry on oeis.org

24574158, 29146163, 156385858, 173105316, 246414308, 404413338, 553659041, 556221794, 745644336, 760923063, 789864069, 794287963, 893806805, 983628183, 1033093563, 1134287383, 1138839886, 1418521141, 1559578963, 1702800491, 1750142480, 2080676083, 2117324180
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 31 2015

Keywords

Comments

Two of 9n+1..9n+8 are multiples of 4, so concentrate on the other six. The probability that any k of these six are all squarefree is P(k) := Product {p prime > 3} (p^2-k)/p^2. By inclusion-exclusion, the probability that none of the six are squarefree is 1 - 6P(1) + 15P(2) - 20P(3) + 15P(4) - 6P(5) + P(6), or roughly one in 92600000. - Michael R Peake, Apr 04 2017

Examples

			24574158 is in this sequence because
9 * 24574158 + 1 = 221167423 = 230143 * 31^2,
9 * 24674158 + 2 = 221167424 = 3455741 * 2^6,
9 * 24674158 + 3 = 221167425 = 128213 * 23 * 5^3,
9 * 24674158 + 4 = 221167426 = 80777 * 2 * 37^2,
9 * 24674158 + 5 = 221167427 = 45127 * 29 * 13^2,
9 * 24674158 + 6 = 221167428 = 18430619 * 3 * 2^2,
9 * 24674158 + 7 = 221167429 = 33937 * 19 * 7^3,
9 * 24674158 + 8 = 221167430 = 3889 * 47 * 5 * 2 * 11^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..25000000] | not IsSquarefree(9*n+1) and not IsSquarefree(9*n+2) and not IsSquarefree(9*n+3) and not IsSquarefree(9*n+4) and not IsSquarefree(9*n+5) and not IsSquarefree(9*n+6) and not IsSquarefree(9*n+7) and not IsSquarefree(9*n+8)];
    
  • PARI
    is(n)=for(k=9*n+1,9*n+8,if(issquarefree(k),return(0))); 1 \\ Charles R Greathouse IV, Jun 02 2015

Extensions

a(3)-a(8) from Charles R Greathouse IV, Jun 02 2015
a(9)-a(23) from Charles R Greathouse IV, Jun 03 2015
Showing 1-2 of 2 results.