A258222 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (k*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 2, 2, 1, 3, 10, 5, 1, 4, 24, 74, 14, 1, 5, 44, 297, 706, 42, 1, 6, 70, 764, 4896, 8162, 132, 1, 7, 102, 1565, 17924, 100278, 110410, 429, 1, 8, 140, 2790, 47650, 527844, 2450304, 1708394, 1430, 1, 9, 184, 4529, 104454, 1831250, 18685164, 69533397, 29752066, 4862
Offset: 0
Examples
Square array A(n,k) begins: : 1, 1, 1, 1, 1, 1, ... : 1, 2, 3, 4, 5, 6, ... : 2, 10, 24, 44, 70, 102, ... : 5, 74, 297, 764, 1565, 2790, ... : 14, 706, 4896, 17924, 47650, 104454, ... : 42, 8162, 100278, 527844, 1831250, 4953222, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Wikipedia, Lattice path
Crossrefs
Programs
-
Maple
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1) + b(x-1, y+1, true, k) )) end: A:= (n, k)-> b(2*n, 0, false, k): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y + 1, True, k]]]; A [n_, k_] := b[2*n, 0, False, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
Formula
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258223(n,i).
Comments