A258231 Numbers n such that both n and n squared contain exactly the same digits, and n is not divisible by 10.
1, 4762, 4832, 10376, 10493, 11205, 12385, 14829, 23506, 24605, 26394, 34196, 36215, 48302, 49827, 68474, 71205, 72576, 74528, 79286, 79603, 79836, 94583, 94867, 96123, 98376, 100469, 100496, 100498, 100499, 100946, 102245, 102953, 103265, 103479, 103756
Offset: 1
Examples
4832 is a term because 4832 squared = 23348224 which contains exactly the same digits as 4832.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Select[Range[200000],ContainsExactly[IntegerDigits[ #], IntegerDigits[ #^2]]&], !Divisible[#,10]&]
-
Python
A258231_list = [n for n in range(10**6) if n % 10 and set(str(n)) == set(str(n**2))] # Chai Wah Wu, Apr 23 2016
Comments