cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258277 Expansion of chi(-q) * phi(-q^3) * psi(q^3) in powers of q where chi(), phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 0, -2, 2, -1, 0, 0, 3, 0, 0, -2, 2, -2, 0, 0, 1, -2, 0, -2, 2, -1, 0, 0, 2, 0, 0, -2, 4, 0, 0, 0, 2, -3, 0, -2, 2, 0, 0, 0, 1, 0, 0, -4, 0, -2, 0, 0, 4, -2, 0, 0, 2, -2, 0, 0, 3, 0, 0, -2, 2, 0, 0, 0, 2, -1, 0, -2, 4, -2, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0
Offset: 0

Views

Author

Michael Somos, May 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - 2*x^3 + 2*x^4 - x^5 + 3*x^8 - 2*x^11 + 2*x^12 - 2*x^13 + ...
G.f. = q - q^4 - 2*q^10 + 2*q^13 - q^16 + 3*q^25 - 2*q^34 + 2*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] QPochhammer[ x^6] / QPochhammer[ -x, x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x^2 + A), n))};

Formula

Expansion of q^(-1/3) * eta(q) * eta(q^3) * eta(q^6) / eta(q^2) in powers of q.
Euler transform of period 6 sequence [ -1, 0, -2, 0, -1, -2, ...].
G.f.: Product_{k>0} (1 - x^(3*k)) * (1 - x^(6*k)) / (1 + x^k).
a(n) = (-1)^n * A122865(n).
a(2*n + 1) = - A122856(n). a(4*n) = A002175(n). a(4*n + 1) = - A122865(n). a(4*n + 2) = a(8*n + 7) = 0. a(8*n + 3) = -2 * A121444(n). a(8*n + 5) = - A122856(n).
a(n) = -A258210(3*n + 1). - Michael Somos, May 01 2016