cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258279 Expansion of psi(q)^2 * chi(-q^3)^2 in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 0, -2, -2, 0, 0, 1, -4, -4, 0, 0, 4, 0, 0, -2, -2, 4, 0, 2, 0, 0, 0, 0, 6, 2, 0, 0, -2, 0, 0, 1, 0, -4, 0, 4, 4, 0, 0, -4, -2, 0, 0, 0, -8, 0, 0, 0, 2, 3, 0, -4, -2, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -4, 0, 0, 2, 0, 0, 0, 4, 4, 2, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, May 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + q^2 - 2*q^4 - 2*q^5 + q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/6, q]^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^2, n))};

Formula

Expansion of eta(q^2)^4 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)^2) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 0, -2, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 36 (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A002175.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^k + x^(2*k))^2.
Convolution square of A089810.
a(2*n) = A258228(n). a(3*n + 1) = 2 * A258277(n). a(3*n + 2) = A258278(n). a(4*n + 3) = 0. a(6*n + 2) = A122865(n). a(6*n + 4) = -2 * A122856(n). a(12*n + 1) = 2 * A002175(n). a(12*n + 5) = -2 * A121444(n).
a(18*n) = A004018(n). a(18*n + 3) = a(18*n + 6) = a(18*n + 12) = 0.