A258281 Number of partitions of 3 copies of n into distinct parts.
1, 1, 4, 5, 13, 18, 37, 56, 103, 154, 279, 398, 682, 1027, 1664, 2433, 3977, 5755, 8957, 13173, 19980, 29002, 43894, 62562, 92531, 133550, 193348, 274049, 398218, 558839, 796906, 1120833, 1577874, 2197279, 3089063, 4258348, 5915878, 8170572, 11231601, 15355764
Offset: 5
Keywords
Examples
a(7) = 4: [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..200
Crossrefs
Column k=3 of A258280.
Programs
-
Mathematica
nmax = 30; p = 1; Do[p = Expand[p*(1 + x^j + y^j + z^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) && (Exponent[#, z] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] == Exponent[#, z] &]; Table[Coefficient[p, x^n*y^n*z^n]/6, {n, 5, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
Formula
a(n) = 1/6 * [(x*y*z)^n] Product_{j>0} (1+x^j+y^j+z^j).