A258284 Number of partitions of 6 copies of n into distinct parts.
1, 1, 7, 10, 40, 64, 215, 373, 1076, 1823, 5052, 8519, 21279, 36836, 86354, 148550, 338354, 571638, 1242227, 2156661, 4453444, 7573979, 15612927, 26325001, 52042210, 88853970, 170752721, 288367364, 550431942, 916369374, 1706148831, 2877961566, 5219075925
Offset: 11
Keywords
Examples
a(13) = 7: [13;12,1;11,2;10,3;9,4;8,5], [13;12,1;11,2;10,3;9,4;7,6], [13;12,1;11,2;10,3;8,5;7,6], [13;12,1;11,2;9,4;8,5;7,6], [13;12,1;10,3;9,4;8,5;7,6], [13;11,2;10,3;9,4;8,5;7,6], [12,1;11,2;10,3;9,4;8,5;7,6].
Links
- Alois P. Heinz, Table of n, a(n) for n = 11..50
Crossrefs
Column k=6 of A258280.
Formula
a(n) = 1/6! * [(x*y*z*u*v*w)^n] Product_{j>0} (1+x^j+y^j+z^j+u^j+v^j+w^j).