A258293 Number of partitions of 3*n^2 into parts that are at most n.
1, 1, 7, 75, 1033, 16019, 269005, 4767088, 87914929, 1671580383, 32560379840, 646795901962, 13058489343812, 267268692575830, 5534279506641422, 115754904055926892, 2442438538492842691, 51934447672016653655, 1111872048730513043539, 23949840661000275507964
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..274
Programs
-
Maple
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
-
Mathematica
(* A program to compute the constant d = 23.98280768... *) With[{j=3}, r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->100]] (* Vaclav Kotesovec, Jun 10 2015 *)
Formula
a(n) ~ c * d^n / n^2, where d = 23.98280768122086592445663786762351573848..., c = 0.0530017980244665552354063060738409813... .