A206226
Number of partitions of n^2 into parts not greater than n.
Original entry on oeis.org
1, 1, 3, 12, 64, 377, 2432, 16475, 116263, 845105, 6292069, 47759392, 368379006, 2879998966, 22777018771, 181938716422, 1465972415692, 11902724768574, 97299665768397, 800212617435074, 6617003142869419, 54985826573015541, 458962108485797208, 3846526994743330075
Offset: 0
-
T:= proc(n, k) option remember;
`if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
end:
seq(T(n^2, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
-
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n^2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
(* A program to compute the constants d(j) *) Table[r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->60], {j, 1, 5}] (* Vaclav Kotesovec, Jun 11 2015 *)
-
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2)))),n^2)}
for(n=0,25,print1(a(n),", "))
A258294
Number of partitions of 4*n^2 into parts that are at most n.
Original entry on oeis.org
1, 1, 9, 127, 2280, 46262, 1015691, 23541165, 567852809, 14123231487, 359874480333, 9351900623083, 247006639629275, 6613877399621729, 179171447281396640, 4902895256737984134, 135346525073067516814, 3765244155890019687101, 105465364199865165010867
Offset: 0
-
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
-
(* A program to compute the constant d = 31.37931997... *) With[{j=4}, r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->100]] (* Vaclav Kotesovec, Jun 10 2015 *)
A258295
Number of partitions of 5*n^2 into parts that are at most n.
Original entry on oeis.org
1, 1, 11, 192, 4263, 106852, 2897747, 82966258, 2472338185, 75966810293, 2391508958235, 76782438832425, 2505642670439980, 82893573492724961, 2774547946438608789, 93807671621922558215, 3199617653993448321146, 109979504522862990517172, 3806257106793028952525938
Offset: 0
-
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n
-
(* A program to compute the constant d = 38.7729855... *) With[{j=5}, r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->100]] (* Vaclav Kotesovec, Jun 10 2015 *)
A258296
Number of partitions of 2*n^2 into parts that are at most n.
Original entry on oeis.org
1, 1, 5, 37, 351, 3765, 43752, 536375, 6842599, 89984614, 1212199424, 16651935901, 232477235048, 3290090540717, 47106320777132, 681247106742555, 9938641464083052, 146113228303254020, 2162784490438698636, 32209221982817148364, 482304350308369699381
Offset: 0
-
T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
-
(* A program to compute the constant d = 16.5796212... *) With[{j=2}, r^(2*j+1)/(r-1) /.FindRoot[-PolyLog[2,1-r] == (j+1/2)*Log[r]^2, {r, E}, WorkingPrecision->100]] (* Vaclav Kotesovec, Jun 10 2015 *)
Showing 1-4 of 4 results.
Comments