cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A238608 Number of partitions of n^3 into parts that are at most n.

Original entry on oeis.org

1, 1, 5, 75, 2280, 106852, 6889527, 569704489, 57733506640, 6944433285769, 968356321790171, 153738253618009045, 27396489338187214000, 5417302365503826145732, 1177436831956414016252071, 279074576444362385794783853, 71649589941044468875380333533
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Comments

In general, "number of partitions of j*n^3 into parts that are at most n" is (for j>0) asymptotic to exp(2*n + 1/(4*j)) * n^(n-3) * j^(n-1) / (2*Pi). - Vaclav Kotesovec, May 25 2015

Crossrefs

Column k=3 of A238016.
Cf. A258302 (j=2), A258303 (j=3), A258304 (j=4), A258305 (j=5).

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(nVaclav Kotesovec, May 25 2015 after Alois P. Heinz
  • Mathematica
    a[n_] := SeriesCoefficient[1/QPochhammer[q, q, n], {q, 0, n^3}]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 03 2015 *)

Formula

a(n) = [x^(n^3)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ exp(2*n + 1/4) * n^(n-3) / (2*Pi). - Vaclav Kotesovec, May 25 2015

A258303 Number of partitions of 3*n^3 into parts that are at most n.

Original entry on oeis.org

1, 1, 13, 588, 53089, 7431069, 1432812535, 354709605775, 107681683621061, 38815870525676822, 16224696168627992214, 7722681288635179285337, 4126484069454572889453794, 2446850787696893234909546422, 1594892857383186062141424302309
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n + 1/12) * 3^(n-1) * n^(n-3) / (2*Pi).

A258304 Number of partitions of 4*n^3 into parts that are at most n.

Original entry on oeis.org

1, 1, 17, 1027, 123464, 23030612, 5918918145, 1953335236481, 790541795804221, 379916850888632162, 211720519858133280231, 134359691058417334173117, 95719564240981718602134049, 75674822191817499226090337378, 65766024754772296807292428860854
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n + 1/16) * 4^(n-1) * n^(n-3) / (2*Pi).

A258305 Number of partitions of 5*n^3 into parts that are at most n.

Original entry on oeis.org

1, 1, 21, 1587, 238383, 55567352, 17847892852, 7361757422695, 3723968532118769, 2236948326023829383, 1558198571940473783110, 1236019919143994867274825, 1100668944858994534988670451, 1087699749857592852109688615310, 1181577954513871365541825872100466
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n + 1/20) * 5^(n-1) * n^(n-3) / (2*Pi).
Showing 1-4 of 4 results.