A258308 Row sums of A258307.
1, 1, 3, 7, 24, 74, 277, 997, 4016, 16029, 68802, 296740, 1347175, 6185975, 29530010, 143008050, 714469780, 3625572745, 18884279461, 99936069760, 540947985741, 2974463266900, 16686653393208, 95053009906135, 551356966419818, 3245644584299434, 19425857465136193
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A258307.
Programs
-
Maple
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1) +b(x-1, y, false, k) +b(x-1, y+1, true, k))) end: A:= (n, k)-> b(n, 0, false, k): T:= proc(n, k) option remember; add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k! end: a:= n-> add(T(n, k), k=0..n/2): seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]]; A[n_, k_] := b[n, 0, False, k]; T[n_, k_] := T[n, k] = Sum[A[n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}]/k!; a[n_] := Sum[T[n, k], {k, 0, n/2}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..floor(n/2)} A258307(n,k).