A258310 T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258309(n,i); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
1, 1, 2, 1, 4, 3, 9, 14, 3, 21, 50, 15, 51, 204, 122, 15, 127, 784, 644, 105, 323, 3212, 4115, 1310, 105, 835, 13068, 22587, 9270, 945, 2188, 55475, 137503, 85109, 16764, 945, 5798, 238073, 787127, 614779, 149754, 10395
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 2, 1; : 4, 3; : 9, 14, 3; : 21, 50, 15; : 51, 204, 122, 15; : 127, 784, 644, 105; : 323, 3212, 4115, 1310, 105; : 835, 13068, 22587, 9270, 945; : 2188, 55475, 137503, 85109, 16764, 945;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1) +b(x-1, y, false, k) +b(x-1, y+1, true, k))) end: A:= (n, k)-> b(n, 0, false, k): T:= proc(n, k) option remember; add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k! end: seq(seq(T(n, k), k=0..n/2), n=0..14);
-
Mathematica
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]]; A[n_, k_] := b[n, 0, False, k]; T[n_, k_] := Sum[A[n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]/k!; Table[Table[T[n, k], {k, 0, n/2}], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)