A258311 Row sums of A258310.
1, 1, 3, 7, 26, 86, 392, 1660, 9065, 46705, 297984, 1805926, 13186497, 91788477, 754481662, 5924676900, 54092804430, 472512732558, 4739696836485, 45540919862179, 497377234156959, 5208759709993591, 61475622078245542, 696384168181553136, 8825761698420052542
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A258310.
Programs
-
Maple
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1) +b(x-1, y, false, k) +b(x-1, y+1, true, k))) end: A:= (n, k)-> b(n, 0, false, k): T:= proc(n, k) option remember; add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k! end: a:= proc(n) option remember; add(T(n, k), k=0..n/2) end: seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]]; A[n_, k_] := b[n, 0, False, k]; T[n_, k_] := Sum[A[n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]/k!; a[n_] := Sum[T[n, k], {k, 0, n/2}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..floor(n/2)} A258310(n,k).