cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258311 Row sums of A258310.

Original entry on oeis.org

1, 1, 3, 7, 26, 86, 392, 1660, 9065, 46705, 297984, 1805926, 13186497, 91788477, 754481662, 5924676900, 54092804430, 472512732558, 4739696836485, 45540919862179, 497377234156959, 5208759709993591, 61475622078245542, 696384168181553136, 8825761698420052542
Offset: 0

Views

Author

Alois P. Heinz, May 25 2015

Keywords

Crossrefs

Cf. A258310.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
                      +b(x-1, y, false, k) +b(x-1, y+1, true, k)))
        end:
    A:= (n, k)-> b(n, 0, false, k):
    T:= proc(n, k) option remember;
           add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!
        end:
    a:= proc(n) option remember; add(T(n, k), k=0..n/2) end:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0,
         If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1]
                     + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];
    A[n_, k_] := b[n, 0, False, k];
    T[n_, k_] := Sum[A[n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]/k!;
    a[n_] := Sum[T[n, k], {k, 0, n/2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..floor(n/2)} A258310(n,k).