cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A278881 Triangle where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 20, 30, 4, 0, 1, 40, 147, 80, 5, 0, 1, 70, 504, 672, 175, 6, 0, 1, 112, 1386, 3600, 2310, 336, 7, 0, 1, 168, 3276, 14520, 18150, 6552, 588, 8, 0, 1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0, 1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0, 1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0, 1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Examples

			This triangle of coefficients of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n, begins:
1;
1, 0;
1, 2, 0;
1, 8, 3, 0;
1, 20, 30, 4, 0;
1, 40, 147, 80, 5, 0;
1, 70, 504, 672, 175, 6, 0;
1, 112, 1386, 3600, 2310, 336, 7, 0;
1, 168, 3276, 14520, 18150, 6552, 588, 8, 0;
1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0;
1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0;
1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0;
1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0; ...
Generating function:
C(x,m) = 1 + x^2 + (1 + 2*m)*x^4 + (1 + 8*m + 3*m^2)*x^6 +
(1 + 20*m + 30*m^2 + 4*m^3)*x^8 +
(1 + 40*m + 147*m^2 + 80*m^3 + 5*m^4)*x^10 +
(1 + 70*m + 504*m^2 + 672*m^3 + 175*m^4 + 6*m^5)*x^12 +
(1 + 112*m + 1386*m^2 + 3600*m^3 + 2310*m^4 + 336*m^5 + 7*m^6)*x^14 +
(1 + 168*m + 3276*m^2 + 14520*m^3 + 18150*m^4 + 6552*m^5 + 588*m^6 + 8*m^7)*x^16 +...
where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
C(x,m)^2 = 1 + 2*x^2 + (4*m + 3)*x^4 + (6*m^2 + 20*m + 4)*x^6 +
(8*m^3 + 70*m^2 + 60*m + 5)*x^8 +
(10*m^4 + 180*m^3 + 392*m^2 + 140*m + 6)*x^10 +
(12*m^5 + 385*m^4 + 1680*m^3 + 1512*m^2 + 280*m + 7)*x^12 +
(14*m^6 + 728*m^5 + 5544*m^4 + 9900*m^3 + 4620*m^2 + 504*m + 8)*x^14 +
(16*m^7 + 1260*m^6 + 15288*m^5 + 47190*m^4 + 43560*m^3 + 12012*m^2 + 840*m + 9)*x^16 +
(18*m^8 + 2040*m^7 + 36960*m^6 + 180180*m^5 + 286286*m^4 + 156156*m^3 + 27720*m^2 + 1320*m + 10)*x^18 +...
		

Crossrefs

Cf. A278880 (S(x,m)), A278882 (D(x,m)), A278884 (central terms).
Cf. A001764 (row sums), A000108, A258314 (C(x,m) at m=2), A243863.

Programs

  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(C,2*n,x),k,m)}
    for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Explicit formula for T(n, k) */
    {T(n,k) = if(k==0,1, if(n==k,0, (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) ))}
    for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016

Formula

G.f. C = C(x,m), and related functions S = S(x,m) and D = D(x,m) satisfy:
(1.a) S = x*C*D.
(1.b) C = 1 + x*S*D.
(1.c) D = 1 + m*x*S*C.
...
(2.a) C = C^2 - S^2.
(2.b) D = D^2 - m*S^2.
(2.c) C = (1 + sqrt(1 + 4*S^2))/2.
(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.
...
(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.
(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).
(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).
(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).
(3.e) C = 1/(1 - x^2*D^2).
(3.f) D = 1/(1 - m*x^2*C^2).
...
(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.
(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.
(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.
...
(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).
Logarithmic derivatives.
(6.a) C'/C = 2*S*S' / (C^2 + S^2).
(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).
...
T(n,k) = (k+1) * A082680(n+1,k+1) for n>=0 with T(0,0) = 1 and T(n,n) = 1 for n>0. - Paul D. Hanna, Dec 11 2016
T(n,k) = (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) for n>k>0 with T(n,0) = 1 and T(n,n) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
Row sums yield A001764(n) = binomial(3*n,n)/(2*n+1).
Central terms: T(2*n,n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).
Sum_{k=0..n} 2^k * T(n,k) = A258314(n-1) for n>=0.
Sum_{k=0..n} (-1)^k * T(n,k) = A243863(n) for n>=0.

A258313 G.f. A(x) satisfies: A(x) = B(x)*C(x) where B(x) = 1 + x*A(x)*C(x) and C(x) = 1 + 2*x*A(x)*B(x).

Original entry on oeis.org

1, 3, 15, 93, 641, 4719, 36335, 289017, 2356321, 19586283, 165364799, 1414193205, 12224831937, 106645825047, 937685498271, 8301129707121, 73929906605249, 661919872559763, 5954449287679919, 53791836313371405, 487807821246726273, 4438980860105747967, 40521481906592540175
Offset: 0

Views

Author

Paul D. Hanna, May 25 2015

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 641*x^4 + 4719*x^5 + 36335*x^6 +...
where A(x) = B(x)*C(x):
B(x) = 1 + x + 5*x^2 + 29*x^3 + 193*x^4 + 1389*x^5 + 10525*x^6 +...
C(x) = 1 + 2*x + 8*x^2 + 46*x^3 + 304*x^4 + 2178*x^5 + 16456*x^6 +...
Related series:
A(x)*B(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1089*x^4 + 8228*x^5 +...
A(x)*C(x) = 1 + 5*x + 29*x^2 + 193*x^3 + 1389*x^4 + 10525*x^5 +...
		

Crossrefs

Cf. A258314 (B(x)), A258315 (C(x)), A278880.

Programs

  • Mathematica
    Table[Sum[2^k*(2*n + 1)/((2*n - 2*k + 1)*(2*k + 1))*Binomial[2*n - k, k]*Binomial[n + k, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 09 2016, after Paul D. Hanna *)
  • PARI
    {a(n)=local(A=1+x,B=1+x,C=1+2*x);for(i=1,n, A = B*C +x*O(x^n); B = 1 + x*A*C + x*O(x^n); C = 1 + 2*x*A*B + x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1); A = (1/x) * serreverse( x*(1-2*x^2)^2 / ((1+x)*(1+2*x) +x*O(x^n)) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Explicit formula from triangle A278880 */
    {a(n) = sum(k=0,n, 2^k * (2*n+1)/((2*n-2*k+1)*(2*k+1)) * binomial(2*n-k, k) * binomial(n+k, n-k) )}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Dec 08 2016

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + 3*x*A(x) + 2*x^2*A(x)^2*(1 + 2*A(x)) - 4*x^4*A(x)^5.
(2) A(x) = (1 + x*A(x))*(1 + 2*x*A(x)) / (1 - 2*x^2*A(x)^2)^2.
(3) A(x) = (1/x) * Series_Reversion( x*(1-2*x^2)^2 / ((1+x)*(1+2*x)) ).
Other relations involving A=A(x), B=B(x), and C=C(x) are:
(a) B = (1 + x*A) / (1 - 2*x^2*A^2).
(b) C = (1 + 2*x*A) / (1 - 2*x^2*A^2).
(c) B = 1/(1 - x*C^2).
(d) C = 1/(1 - 2*x*B^2).
a(n) = Sum_{k=0..n} 2^k * (2*n+1)/((2*n-2*k+1)*(2*k+1)) * binomial(2*n-k, k) * binomial(n+k, n-k). - Paul D. Hanna, Dec 08 2016
Recurrence: 16*n*(n+1)*(2*n-1)*(2*n+1)*(78144*n^5 - 638176*n^4 + 2009556*n^3 - 3030476*n^2 + 2162967*n - 571095)*a(n) = 6*n*(2*n - 1)*(3750912*n^7 - 30632448*n^6 + 95859584*n^5 - 141041184*n^4 + 91266236*n^3 - 10305348*n^2 - 11143087*n + 2769495)*a(n-1) + 18*(1875456*n^9 - 19067136*n^8 + 81388448*n^7 - 188788320*n^6 + 255050924*n^5 - 194874764*n^4 + 66686587*n^3 + 7734535*n^2 - 12646725*n + 2646000)*a(n-2) + 18*(n-2)*(1875456*n^8 - 18129408*n^7 + 70578528*n^6 - 140304800*n^5 + 146662564*n^4 - 69042202*n^3 - 184198*n^2 + 11212005*n - 2646000)*a(n-3) + 3*(n-3)*(n-2)*(3*n - 10)*(3*n - 5)*(78144*n^5 - 247456*n^4 + 238292*n^3 - 49424*n^2 - 31301*n + 10920)*a(n-4). - Vaclav Kotesovec, Dec 09 2016

A258315 G.f. C(x) satisfies: C(x) = 1 + 2*x*A(x)*B(x) where A(x) = B(x)*C(x) and B(x) = 1 + x*A(x)*C(x).

Original entry on oeis.org

1, 2, 8, 46, 304, 2178, 16456, 129086, 1041248, 8582274, 71964232, 611954286, 5264786448, 45741886786, 400776143752, 3537136653566, 31417018218688, 280616550025218, 2518975669228936, 22712641808517166, 205612543320237808, 1868112977079278594, 17028815533533595080
Offset: 0

Views

Author

Paul D. Hanna, May 25 2015

Keywords

Examples

			G.f.: C(x) = 1 + 2*x + 8*x^2 + 46*x^3 + 304*x^4 + 2178*x^5 + 16456*x^6 +...
where C(x) = 1 + 2*x*A(x)*B(x):
A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 641*x^4 + 4719*x^5 + 36335*x^6 +...
B(x) = 1 + x + 5*x^2 + 29*x^3 + 193*x^4 + 1389*x^5 + 10525*x^6 +...
Related series:
A(x)*B(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1089*x^4 + 8228*x^5 +...
A(x)*C(x) = 1 + 5*x + 29*x^2 + 193*x^3 + 1389*x^4 + 10525*x^5 +...
		

Crossrefs

Cf. A258313 (A(x)), A258314 (B(x)).

Programs

  • PARI
    {a(n)=local(A=1+x,B=1+x,C=1+2*x);for(i=1,n, A = B*C +x*O(x^n); B = 1 + x*A*C + x*O(x^n); C = 1 + 2*x*A*B + x*O(x^n)); polcoeff(C,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(C=1); C = (1/x)*serreverse( x^2/(x + 2*serreverse( x*(1-2*x^2)/(1+x +x*O(x^n)) )^2) ); polcoeff(C,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. C(x) satisfies:
(1) C(x) = 1 + 2*x*C(x)*(1 - C(x) + C(x)^2) + x^2*C(x)^4*(1 - C(x)).
(2) C(x) = (1/x)*Series_Reversion( x^2/(x + 2*Series_Reversion( x*(1-2*x^2)/(1+x) )^2) ).
(3) x = (sqrt(1 - 2*C(x) + 2*C(x)^2) - (1 - C(x) + C(x)^2)) / (C(x)^3*(1 - C(x))).
Other relations involving A=A(x), B=B(x), and C=C(x) are:
(a) B = (1 + x*A) / (1 - 2*x^2*A^2).
(b) C = (1 + 2*x*A) / (1 - 2*x^2*A^2).
(c) B = 1/(1 - x*C^2).
(d) C = 1/(1 - 2*x*B^2).
Showing 1-3 of 3 results.