A258332 Numbers n such that 4n + 1, 4n + 2 and 4n + 3 are not squarefree.
211, 420, 722, 906, 2731, 3687, 3962, 4351, 4985, 5505, 5656, 5818, 6162, 6443, 7337, 7562, 7731, 8293, 9175, 9312, 9681, 9861, 10118, 11343, 11918, 11931, 11956, 12093, 12372, 13646, 13756, 13862, 14280, 14618, 14712, 14981, 15306, 15716, 15743, 15961, 16512, 17162, 17237
Offset: 1
Examples
211 is in this sequence because 4 * 211 + 1 = 845 = 5 * 13^2, 4 * 211 + 2 = 846 = 2 * 3^2 * 47 and 4 * 211 + 3 = 847 = 7 * 11^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..20000] | not IsSquarefree(4*n+1) and not IsSquarefree(4*n+2) and not IsSquarefree(4*n+3)];
-
Maple
remove(t->ormap(numtheory:-issqrfree,[4*t+1,4*t+2,4*t+3]), [$1..2*10^4]); # Robert Israel, Apr 03 2018
-
Mathematica
Select[Range[1000], Union[{MoebiusMu[4# + 1], MoebiusMu[4# + 2], MoebiusMu[4# + 3]}] == {0} &] (* Alonso del Arte, May 26 2015 *)
-
PARI
isok(n) = !issquarefree(4*n+1) && !issquarefree(4*n+2) && !issquarefree(4*n+3); \\ Michel Marcus, Apr 04 2018