A258333 Number of (primitive) weird numbers of the form 2^n*p*q, with odd primes p < q.
1, 1, 5, 3, 10, 23, 29, 53, 115, 210, 394, 683, 1389, 3118, 6507, 9120
Offset: 1
Examples
The only primitive weird number of the form 2*p*q is 70 so a(1) = 1; The only primitive weird number of the form 2^2*p*q is 836 so a(2) = 1; There are 5 primitive weird numbers of the form 2^3*p*q and they are 5704, 7912, 9272, 10792 & 17272; so a(3) = 5; etc.
Links
- Douglas E. Iannucci, On primitive weird numbers of the form 2^k*p*q, arXiv:1504.02761 [math.NT], 2015.
Programs
-
PARI
A258333(n)={ local(s=0,p,M=2^(n+1)-1,qn,T(P=p-1)=is_A006037(qn*p=precprime(P)) && s+=1); forprime(q=2*M,M*(M+1), qn=q<
M, T() || T() || break)); s} \\ Not very efficient, for illustrative purpose only. - M. F. Hasler, Jul 18 2016
Extensions
a(15) from Robert G. Wilson v, Jun 14 2015
a(16) from Robert G. Wilson v, Dec 06 2015
Comments