cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258348 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)).

Original entry on oeis.org

1, 0, 2, 6, 15, 32, 79, 172, 397, 860, 1879, 3986, 8462, 17586, 36408, 74366, 150875, 303006, 604511, 1195872, 2350614, 4587484, 8898857, 17154278, 32883109, 62679852, 118858190, 224238730, 421021209, 786793776, 1463796383, 2711552690, 5002097398, 9190449808
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)),{k,1,nmax}],{x,0,nmax}],x]
    Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[3, k]-DivisorSigma[2, k])*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Apr 11 2016, following a suggestion of George Beck *)

Formula

a(n) ~ 1 / (2^(3/2) * 15^(5/48) * Pi^(1/12) * n^(29/48)) * exp(-Zeta'(-1) - Zeta(3)/(4*Pi^2) - 75*Zeta(3)^3 / Pi^8 - 15^(5/4) * Zeta(3)^2 / (2*Pi^5) * n^(1/4) - sqrt(15) * Zeta(3) / Pi^2 * sqrt(n) + 4*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962).
G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Aug 22 2018