cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258367 a(n) is the smallest A (in absolute value) such that for p = prime(n), 2^{(p-1)/2} == +-1 + A*p (mod p^2), i.e., such that p is a near-Wieferich prime.

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 8, 3, 14, 3, 18, 9, 9, 22, 18, 4, 18, 5, 1, 28, 30, 24, 3, 20, 46, 22, 47, 21, 15, 9, 57, 42, 15, 48, 28, 41, 48, 60, 85, 25, 74, 25, 52, 11, 32, 51, 17, 13, 34, 113, 13, 71, 2, 16, 64, 130, 81, 35, 37, 29, 39, 147, 68, 60, 71, 96, 92, 99, 12
Offset: 2

Views

Author

Felix Fröhlich, May 28 2015

Keywords

Comments

p is in A001220 iff a(n) = 0. This is the case iff A014664(n) = A243905(n), which happens for n = 183 and n = 490.
Is a(n) = 0 for any other n, and, if yes, are there infinitely many such n?

Crossrefs

Programs

  • PARI
    a(n,p=prime(n))=abs(centerlift(Mod(2,p^2)^((p-1)/2))\/p)
    apply(p->a(0,p), primes(100)[2..100]) \\ Charles R Greathouse IV, Jun 15 2015

Formula

a(n) = min(b(n) mod p, -b(n) mod p) where p = prime(n) and b(n) = Sum_{i=1..ceiling((p-1)/4)} (2i-1)^(p-2). - Daniel Chen, Sep 01 2022