A258367 a(n) is the smallest A (in absolute value) such that for p = prime(n), 2^{(p-1)/2} == +-1 + A*p (mod p^2), i.e., such that p is a near-Wieferich prime.
1, 1, 1, 3, 5, 2, 8, 3, 14, 3, 18, 9, 9, 22, 18, 4, 18, 5, 1, 28, 30, 24, 3, 20, 46, 22, 47, 21, 15, 9, 57, 42, 15, 48, 28, 41, 48, 60, 85, 25, 74, 25, 52, 11, 32, 51, 17, 13, 34, 113, 13, 71, 2, 16, 64, 130, 81, 35, 37, 29, 39, 147, 68, 60, 71, 96, 92, 99, 12
Offset: 2
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 2..10000
- R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Mathematics of Computation, 66 (1997), 433-449.
Crossrefs
Programs
-
PARI
a(n,p=prime(n))=abs(centerlift(Mod(2,p^2)^((p-1)/2))\/p) apply(p->a(0,p), primes(100)[2..100]) \\ Charles R Greathouse IV, Jun 15 2015
Formula
a(n) = min(b(n) mod p, -b(n) mod p) where p = prime(n) and b(n) = Sum_{i=1..ceiling((p-1)/4)} (2i-1)^(p-2). - Daniel Chen, Sep 01 2022
Comments