A259051 Triangle T(n,m) for the number of ways to put n stones into an m X n square grid such that each of the m rows contains at least one stone.
1, 1, 4, 1, 18, 27, 1, 68, 288, 256, 1, 250, 2250, 5000, 3125, 1, 922, 15795, 65880, 97200, 46656, 1, 3430, 105987, 739508, 1932805, 2117682, 823543, 1, 12868, 696864, 7653632, 31539200, 59179008, 51380224, 16777216, 1, 48618, 4540968, 75687696, 461828790, 1320099444, 1919564892, 1377495072, 387420489
Offset: 1
Examples
The triangle T(n, m) begins: n\k 1 2 3 4 5 6 7 1: 1 2: 1 4 3: 1 18 27 4: 1 68 288 256 5: 1 250 2250 5000 3125 6: 1 922 15795 65880 97200 46656 7: 1 3430 105987 739508 1932805 2117682 823543 ... 8: 1 12868 696864 7653632 31539200 59179008 51380224 16777216, 9: 1 48618 4540968 75687696 461828790 1320099444 1919564892 1377495072 387420489. a(4, 2) = 68 from the sum 32 + 36 of the n=4 row of A258152 which belong to the partitions of 4 with m=2 parts, namely (1, 3) and (2, 2).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1830 (first 60 rows)
Programs
-
Mathematica
T[n_, k_]:= Sum[Multinomial@@ (Last/@ Tally[e]) * Times@@ Binomial[n, e], {e, IntegerPartitions[n, {k}]}]; Flatten@ Table[ T[n, k], {n, 9}, {k, n}] (* Giovanni Resta, Jun 18 2015 *)
Comments