A258371 Triangle read by rows: T(n,k) is number of ways of arranging n indistinguishable points on an n X n square grid such that k rows contain at least one point.
1, 2, 4, 3, 54, 27, 4, 408, 1152, 256, 5, 2500, 22500, 25000, 3125, 6, 13830, 315900, 988200, 583200, 46656, 7, 72030, 3709545, 25882780, 40588905, 14823774, 823543, 8, 360304, 39024384, 535754240, 1766195200, 1657012224, 411041792, 16777216
Offset: 1
Examples
The number of ways of arranging eight pawns on a standard chessboard such that two rows contain at least one pawn is T(8,2)=360304. Triangle T(n,k) begins: n\k 1 2 3 4 5 6 ... 1: 1 2: 2 4 3: 3 54 27 4: 4 408 1152 256 5: 5 2500 22500 25000 3125 6: 6 13830 315900 988200 583200 46656 ... n = 7: 7 72030 3709545 25882780 40588905 14823774 823543, n = 8: 8 360304 39024384 535754240 1766195200 1657012224 411041792 16777216.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1830 (first 60 rows)
Programs
-
Mathematica
T[n_,k_]:= Binomial[n,k] * Sum[Multinomial@@ (Last/@ Tally[e]) * Times@@ Binomial[n,e], {e, IntegerPartitions[n, {k}]}]; Flatten@ Table[ T[n,k],{n,9}, {k,n}] (* Giovanni Resta, May 28 2015 *)
Formula
T(n,2) = binomial(n,2)*(binomial(2*n,n)-2). - Giovanni Resta, May 28 2015
Comments